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ABSTRACT

Recently sparse representation has been successfully ap-
plied to single object tracking by observing the reconstruc-
tion error of candidate object with sparse representation. In
practice, sparse representation also shows competitive perfor-
mance on multi-class classification, and thus is potential for
multi-object tracking. In this paper we explore this technique
for on-line multi-object tracking through a simple tracking-
by-detection scheme, with background subtraction for object
detection and sparse representation for object recognition. Fi-
nal experiments demonstrate that the proposed approach only
combining color histogram and 2-dimensional coordinates as
features, achieves favorable performance over state-of-the-art
work in persistent identity tracking.

Index Terms— multi-object, tracking, sparse representa-
tion

1. INTRODUCTION

Multi-object tracking is a technique that locates and recog-
nizes a number of objects in some sequential video frames.
Compared to single object tracking, it presents more chal-
lenges on objects discrimination. As a novel technique for
classification, sparse representation has shown promising per-
formance on face recognition [1, 2]. In this paper, we are
motivated to further explore its potential of classification for
multi-object tracking.

Recently sparse representation has been successfully
applied to single object tracking [3–11] by locating the candi-
date object with minimal reconstruction error through the s-
parse representation of templates. Unfortunately, these works
only use sparse representation for object representation, while
ignoring its potential on multi-class classification [1, 2].
Compared to traditional classifiers, like SVM [12], sparse
representation-based classification (SRC) is also competitive
in computation. For instance, the recognition of object can
be implemented by solving one l1-regularization problem for
SRC. Conversely, to obtain better performance, SVM usually
has to divide multi-class classification problem into multiple
binary classification problems. Especially, the number of
binary classifiers increases exponentially with the number of
objects. When new samples appear, each binary classifier

is required to train subspaces again by solving a l1 or l2
regularization problem.

Here we take the popular tracking-by-detection scheme
[13–16] for experiments: objects are first detected by back-
ground subtraction and then discriminated by SRC. For static
scenes, background subtraction [17–19] is still a good option
since it can obtain more reliable results compared to popu-
lar body detection methods preferred by dynamic scenes [20,
21]. Since objects can be located previously by background
subtraction, for simplicity, we are allowed to not use special
motion estimation algorithms at some cost of tracking fluency.
In this paper, to better discriminate objects sharing similar
appearances, object is represented with a vector combining
color histogram as well as the 2-dimensional coordinates of
object center.

The rest of this paper is organized as follows. In section
2, SRC is studied in terms of two types of solution algorithm-
s. In section 3, multi-object tracking approach with SRC
is detailed. In section 4, experimental results are described.
Finally, a conclusion closes this paper.

2. OBJECT RECOGNITION USING SPARSE
REPRESENTATION

2.1. Sparse representation-based classification

SRC in tracking can be described as the following problem.
Let vector y ∈ Rm×1 denote one test object detected from
current frame, and matrix X ∈ Rm×n be the database consist-
ing of n labeled objects collected from former frames. Then
test object can be approximated by the linear combination of
known objects as

y = Xβ + ε (1)

where coefficient β is required to be a k sparse vector, namely
β only has k � n nonzero entries; and ε is a tolerated error.
For a clearer expression, X = [XG1

, XG2
, . . . , XGN ] is fur-

ther segmented into N sub-matrices respectively correspond-
ing to N labeled classes of objects. And each class includes
ni objects, XGi = [xi1 , xi2 , . . . , xini

], where 1 6 i 6 N and∑N
i=1 ni = n . Finally, test object is classified into the class
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Fig. 1: One novel test object (left) in (c) is linearly approximated by
25 labeled training samples in (c), which sequentially correspond to
5 classes of objects in database. Sparse coefficients by LARS [22]
in (a) and by group-OMP [23] in (b) both scatter into 3 classes.

XGi
satisfying

min
XGi

||y − XGi
δi(β)||2, 1 ≤ i ≤ N (2)

where δi(β) is a function that sets all elements of vector β
to zero except those corresponding to submatrix XGi

. It is
easy to understand that when columns of X are normalized,
maximum entry in β usually corresponds to the most similar
object. So for simplicity, argmaxi{βi} or argmaxi{||δi(β)||1}
is usually used to define the most similar class. In addition,
with the goal of discrimination instead of a precise represen-
tation, we do not need exploring additional trivial template,
like Gaussian matrix or identity matrix, to approximate noise
or occlusion.

It is worth mentioning a special case when test object is
novel and out of database, the nonzero entries of β tend to
scatter among classes rather than focus on some single class
as Figure 1 shows. So the novel object can be defined, if the
following condition is verified

max{βi} < γ
∑n

j=1 βj

where 0 < γ < 1 is a constant.

2.2. Solution algorithms

Clearly, the kernel of SRC is to derive sparse solution β from
formula (1). This solution is usually formulated as a linear
regression problem with l1 penalty

β̂ = argmin{‖y − Xβ‖2 + λ‖β‖1} (3)

where λ is a penalty parameter. As a convex problem, it
has been widely studied for variable selection and model es-
timation in statistics, and a number of algorithms like interior
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Fig. 2: One test object (left) in (c) is linearly approximated by 25
labeled training samples in (c), which sequentially correspond to 5
classes of objects in database. class 1 and class 5 both have a false
training sample. According to sparse coefficients, the test sample
belonging to class 1 is recognized successfully by group-OMP [23]
in (b), and incorrectly determined as class 5 by LARS [22] in (a).

point, OMP [24] and LARS [22], are also proposed in the
past decade. These algorithms all perform the greedy pursuit
process, in which columns of X are selected one by one with
respect to minimize the residual of y as well as the number
of nonzero entries of β. In this case SRC is similar to the
nearest neighbor classifier (NNC) which tries to search the
nearest training sample for test sample. Recently, the group-
based greedy pursuit algorithms like Group-LARS [25] and
Group-OMP [23] are sequentially proposed with the form

β̂ = argmin{‖y −
N∑
i=1

XGi
βGi
‖2 + λ

N∑
i=1

‖βGi
‖2} (4)

in which columns of X are operated as group in each greedy
pursuit step. In this case SRC performs like a nearest class
classifier (NCC). Generally, group-based algorithms seem
more robust for database with burst error as the example in
Figure 2. However, our experiments show that the algorithms
without group constraint are more suitable for tracking system
since object is usually similar between two adjacent frames
while suffering from great variation across some frames, and
thus the similarity measurement between test object and a
group of training samples is unreliable.

3. PROPOSED TRACKING SCHEME

3.1. Object detection and representation

For static camera without dense scenes, background subtrac-
tion is efficient for body area detection. Here in terms of
computation cost, we still use traditional method [17] based
on statistically modeling and pixel-wise subtraction instead
of these complex methods with tiny performance gain [18,
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Fig. 3: Tracking results of SRC only with color feature (a) and SRC
with feature integrating color and 2-dimensional coordinates (b). In
(a), object 6 switches into object 2 after 13 frames due to similar
appearance.

19]. The body area is customarily represented by two cascad-
ed RGB histograms corresponding to upper body and lower
body. Furthermore, to discriminate objects sharing similar ap-
pearance, the location information, normalized 2-dimensional
coordinates of object center, is applied to represent object by
concatenating it with normalized RGB vector. Its advantage is
simply exemplified in Figure 3. And the weight ratio between
location and color feature is tuned empirically.

3.2. Overlapping

With background subtraction, the overlapping objects are sub-
ject to be detected as one object. And objects with tiny over-
lap usually can be detected by obvious size variation as shown
in Figure 4(a). To avoid false samples updating or novel ob-
ject definition in database, detected overlap is not processed
and nor labeled in proposed scheme. As for the undetected
overlap as Figure 4 (b) shows, it will be recognized as a u-
nique object. Theoretically, the overlap tends to be linearly
approximated by the objects it includes during sparse repre-
sentation. Thus, the overlap is likely to be defined as the larg-
er object it includes in our experiments. In this sense, SRC
naturally avoids unwelcome novel object definition caused by
overlapping.

3.3. Online database updating

Online database updating attempts to store and train recently
recognized samples which are expected to be most similar to
incoming test objects. This is critical for object recognition
in tracking, since objects usually suffer from serious variation
over time. The matrix structure of SRC is suitable for online
database updating by renewing the columns of X frame by
frame. Furthermore, as a multi-class classifier, there is no
additional decision threshold training like SVM when new
training sample is added. To enhance recognition rates and
avoid false samples accumulation in database, we further im-
pose some constraints on the scheme:

• to avoid identity switch, the initial detected object sam-
ple is always stored in database.

• at the beginning of experiments, the database is expand-
ed by perturbing the initial sample with small Gaussian
noise .

(a)

(b)

Fig. 4: Obvious overlap detected in (a) is not processed. And
undetected overlap in (b) is usually recognized as the object at the
forefront.

• the training samples of the same class share the same
location information from the most recently updated
sample.
• to avoid false recognition or novel object initialization,

detected overlap is not updated.

Note that the popular database learning algorithms for reduc-
ing recovery error [7, 26] are not employed here since our
system aims to exploit and evaluate the discriminability of
SRC instead of recovery error.

4. EXPERIMENTS

There are few benchmark videos for multi-object tracking,
especially the videos with few overlapped scenes that back-
ground subtraction can deal with. For comparison, we start
experiment with a classic video from PETS’09, which has
been evaluated by two state-of-the-art works, ETHZ [14]
and EPFL [16]. ETHZ implements a robust tracking-by-
detection scheme by combing body detection and particle
filter. EPFL attempts to explore object appearance from a
global view with multiple calibrated cameras. To further
verify our performance, we also evaluate proposed approach
on some sequences from PETS’06. (For video results, please
refer to http://youtu.be/SLyABs_nJeg.)

Multi-object tracking usually faces three challenges: ob-
ject switch during overlapping, new object initialization and
re-recognition of re-entering objects. In the following part,
we will briefly introduce two videos and then discuss the re-
sults in terms of aforementioned challenges.

4.1. Database PETS’09.

This video with 795 frames is recorded in a campus at 7 fps
from a high view point. Ten persons walk in and out of scene,
and some of them are similar in color. So it is a challenge
for recognition by appearance. In the following comparison,
they are recalled by the sequence number corresponding to
their entries into scene. In our result, ten persons are labeled
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Fig. 5: Two examples on identity switch caused by overlapping.
EPFL switches the identities of objects 12 and 17 in the first two
frames, and exchange objects 6 and 8 in the last two frames.
Conversely, the proposed approach and ETHZ work well.

with a number, and their initial samples are displaced on the
top of each frame, as Figure 6 shows. In ETHZ and in EPFL,
they are discriminated separately with color-box and number.

Results. Figure 5 illustrates two examples about identity
switch between objects of similar appearances. In fact, the
proposed approach shows better performance for discrimi-
nating objects on the whole video. This mainly benefits from
the features involving object center coordinates. In proposed
approach, one special case is that objects 4 and 5 are labeled
together as object 4 for a long time due to overlap as shown in
Figure 4(b). However, object 5 can be successfully recovered
when they separate. In Figure 6, we give one example about
object re-recognition and novel object initialization, in which
proposed approach works well while other two methods
fail. In fact, proposed approach shows best performance for
persistent identity tracking in the whole video, as confirmed
in Table 1. Otherwise, it should be recalled that proposed
tracking process is not very fluent due to object detection
failure as well as the lack of motion estimation.

4.2. Database PETS’06

We select a relatively crowded scene from S7.T6.B4 (frame
01685 to frame 01985), in which 11 objects suffer from

serious size variation and illumination variation, and some of
them also share similar color. For example, objects 4, 5 and
6 are hard to be distinguished by naked eyes when they walk
away.

Results. As Figure 7 shows, the proposed approach success-
fully detects and initializes these 11 objects. Furthermore,
there is no identity switch caused by occlusion or incorrect
object initialization. This result further proves the robustness
of SRC for multi-object classification.

Ours ETHZ EPFL
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Fig. 6: Examples on object initialization and re-recognition. In the
frame 0470, object 6 re-enters and object 9 first enters (referring
our labels). 0bject 6 is not recovered in ETHZ and EPFL. And
object 9 is incorrectly initialized to object 6 in ETHZ. In contrast,
the proposed approach performs well on above two cases.

Table 1: Correct occurrences for objects entering or re-entering in
scene (PETS’09). Value 0 indicates false object initialization.

Objects 1 2 3 4 5 6 7 8 9 10
Num. of entries 4 2 2 2 2 2 1 1 2 1

Ours 4 2 2 1 1 2 1 1 2 1
ETHZ 4 2 2 1 1 1 1 1 0 0
EPFL 2 1 1 1 1 1 1 1 2 1

Fig. 7: Tracking results for PETS’06. The bottom displays 11
objects that we initialize and track successfully. Our results have
no identity switch or incorrect novel object initialization.

5. CONCLUSION

This paper has explored the potential of SRC for multi-object
tracking through a simple yet effective tracking-by-detection
scheme. By simply combining background subtraction for
object detection and SRC for object recognition, the perfor-
mance better than state-of-the-art is obtained in persistent i-
dentity tracking. As a multi-class classifier, SRC also shows
advantage on complexity since it does not need training spe-
cial classifier for each tracker during online database updat-
ing. In future, SRC will be developed for more advanced
tracking schemes.
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