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ABSTRACT

In this paper, we present a novel method for simultaneous de-
tection and tracking of multiple objects using dual-layer par-
ticle filtering. For detecting and tracking multiple moving ob-
jects, the proposed dual-layer particle filter (DLPF) consists
of parent-particles (PPs) in the first layer for detecting mul-
tiple objects and child-particles (CPs) in the second layer for
tracking objects that are detected in the first layer. In the first
layer, PPs detect persons using a classifier prior trained by the
intersection kernel support vector machine (IKSVM) at each
particle under a randomly selected scale. If a certain PP de-
tects a person, it generates CPs, and makes an object model
in the detected object region for tracking the detected object.
While PPs that have detected objects generate CPs for track-
ing, the rest of PPs still move for detecting objects. Experi-
mental results show that the proposed method can automati-
cally detect and track multiple objects and efficiently reduce
the computational time using the sampled particles based on
motion distribution in video sequences.

Index Terms— Object detection, pedestrian detection,
particle filtering, object tracking, motion estimation

1. INTRODUCTION

Tracking one or more moving objects is a fundamental prob-
lem in computer vision, and has broad applications, such as
object-based auto-focusing, traffic monitoring, vehicle navi-
gation, human computer interaction, augmented reality and
intelligent surveillance [1][2].

Conventional tracking methods can be classified as either
stochastic or deterministic [3][4]. Adaboost is a popular de-
terministic approach that has been widely used for the detec-
tion of targets, and making a trajectory by connecting succes-
sive locations of identified objects. However, the Adaboost
detector may fall into a local minimum when there are oc-
clusions or object deformations. Two well-known, popular
stochastic approaches include Kalman and the particle filters,

both of which recursively estimate the state of a dynamical
system from measurements or observations [5]. Kalman fil-
ter assumes a linear model for the state dynamics and the
measurement equation, and is the optimal estimator when the
noise processes are Gaussian. On the other hand, particle fil-
ters work for both linear and non-linear dynamical systems,
and do not require a Gaussian assumption on the estimation
noise. However, conventional particle filtering requires the
initially specified region for tracking an object. Okuma et al.
have proposed simultaneous multi-target detection and track-
ing using boosting based particle filtering [6]. However, it
requires high computational loads because of the exhaustive
search of objects in the entire image. To solve this problem,
Gualdi have proposed efficient object detection method in the
single image using particle-windows [7]]. It is, however, un-
suitable for real-time video object detection and tracking be-
cause of the resampling structure.

In this paper, we propose a simultaneous multiple objects
detection and tracking method using dual-layer particle filters
(DLPFs), such as parent-particles (PPs) in the first layer and
child-particles (CPs) in the second layer. The proposed detec-
tion and tracking algorithm is shown in Fig. 1.

In the first layer, PPs detect persons using a classifier
trained in advance by the intersection kernel support vector
machine (IKSVM) at each particle under a randomly selected
scale [9]. PPs should be located at the proper object region
for accurate, fast detection of objects. Under assumption
that objects of interest usually move around in the image,
the DLPF estimates the motion in consecutive images, and
resamples PPs from the estimated motion distribution.

In the second layer, if a certain PP detects a person, it gen-
erates CPs, and makes an object model in the detected object
region for tracking the detected object. While PPs that have
detected objects generate CPs for tracking, the rest of PPs
still move for detecting objects. When an object disappears,
the corresponding PP is reset and resampled.

Unlike conventional particle filtering where the tracking
starts by manually specifying the initial region of an object,
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Fig. 1. Proposed dual-layer particle filtering algorithm for
detecting and tracking multiple objects.

the proposed method automatically detects the initial region
of multiple objects and performs tracking with significantly
reduced amount of computation.

Based on experimental results, the proposed simultaneous
multiple objects detection and tracking method can be em-
ployed in various visual investigation applications such as in-
telligent video surveillance, human computer interaction, and
intelligent transportation systems.

2. DUAL-LAYER PARTICLE FILTERING

This section describes the simultaneous objects detection and
tracking method using dual-layer particle filtering (DLPF).
Parent-particles (PPs) in the first layer detect objects, and
child-particles (CPs) in the second layer tracks object that are
detected in the first layer. Fig. 2 illustrates the concept of
the proposed DLPF. PPs marked by yellow particles on top
are weighted by motion distribution, and resampled to detect
an object as shown in the left column of Fig. 2. The PP of
a detected object generates CPs marked by brown particles,
which are weighted by motion distribution as shown in the
right column Fig. 2. This process repeats to track the object
until it disappears.

2.1. First layer particle filtering for object detection

In the first layer, PPs detect objects using a classifier prior
trained by intersection kernel support vector machines (IKSVM)
at each particle under a randomly selected scale.

Fig. 2. Concept of the DLPF.

For fast object detection by PPs in video, particles should
be properly distributed and located. We estimate the motion
of objects being tracked, and resample the PPs by motion
distribution-based weighting.

Lucas-Kanade (LK) algorithm has been widely used for
estimating motion in the optical flow [10]. From the optical
flow equation, motion vector M = [dx, dy]T for resampling
PPs in the neighborhood of the object is calculated by least-
square problem as

M =

[ ∑
Ω I

2
x

∑
Ω IxIy∑

Ω IxIy
∑

Ω I
2
y

]−1[−∑Ω IxIt
−
∑

Ω IyIt

]
, (1)

where Ω represents the window region, and Ix and Iy rep-
resent spatial derivatives of I with respect to horizontal and
vertical directions, respectively, and It the temporal deriva-
tive of I .

For resampling PPs around of the moving objects, we
should consider a particle filtering model in the state space.
The state of particles can be represented as s =

[
x, y, vx, vy

]T
,

and the state transition model with constant velocity can also
be defined as

xk = xk−1 + vxk−1∆k,
yk = yk−1 + vyk−1∆k,
vxk = vxk−1,
vyk = vyk−1,

(2)

where (vx, vy) represents the velocity of the particle. The
discrete version of the state transition equations with ∆k = 1
can be expressed as

s−k = As+
k−1 + wk, (3)

where

A =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 ,andwk =


N(0, Qpos)
N(0, Qpos)
N(0, Qvel)
N(0, Qvel)

 , (4)

(5)

where Qpos and Qvel are, separately, position and velocity
covariance of process noise. The measurement mk can be
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represented in the predicted state s−k with

mk = M(xk, yk), (6)

where M(x, y) =
√
d2
x + d2

y represents the magnitude of the
motion, and the likelihood is calculated as

L = − log(2πR)− ‖yD‖
2

√
2π

, (7)

where R represents the standard deviation of the motion esti-
mation noise, ‖yD‖ = yo− yk, where y0 represents the target
motion magnitude which is experimentally set to 5, and the
maximum of M(x, y) is set to 5. We then compute the cumu-
lative sum using regularized log-likelihood as

ci =
∑i

m=1

Li
Ltotal

, for i = 1, ..., N, (8)

where N is the total number of PPs, Ltotal represents the to-
tal sum of L. We generate real random numbers ui that uni-
formly distribute in [0,1].

Finally, PPs randomly select the scale for determining the
size of a detected object at s+

k . For i = 1, . . . , N , we find a
positive integer j such that cj−1 < ui and cj ≥ ui , and then
update the current state as s+

k,i ← s−k,j .
The result of the first layer particle filtering is shown in

Fig. 3. PPs are resampled by the objects movements and
the pedestrian detection can be performed at each PP using
IKSVM.

(a) Frame 101 (b) Frame 206 (c) Frame 273

Fig. 3. Result of the first layer particle filtering. (red: detected
objects, yellow: PPs)

2.2. Second layer particle filtering for object tracking

In the second layer, if a certain PP detects the pedestrian, the
corresponding PP generates CPs, and makes an object model
in the detected object region for tracking the detected object.
The Bayesian approach to the object tracking is to recursively
update an estimate of the state of an object xk at time k given
the measurements or observations, y1:k, of the object up to
time k. The state vector may consist of a number of states,
such as the two- or three-dimensional position, xPk , and the
scale xsk of an object. If p(xk|xk−1), the probability density
function of the state at time k given all of the measurements
up to time k − 1, is known, then the state at time k may be
predicted using the Chapman-Kolmogorov equation as

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1, (9)

where p(xk|y1:k−1) is the prior density. Given a new mea-
surement, yk, at time k, the prior is updated using posterior
density computed by Bayes’ rule as

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
(10)

where p(yk|xk) represents the observation model. Equations
(7) and (8) form the basis of the optimum Bayes’ solution.
Unfortunately, the recursive propagation of these densities is
generally intractable, and other approaches are used to ap-
proximate this solution. One of these is the particle filter,
which is a Monte Carlo (MC) method that uses sequential
importance sampling.

In the PPs, the posterior p(xk|y1:k) is approximated by a
finite set ofN samples {xit}i=1,...,N with importance weights
wit. The candidate samples x̃ik are drawn independently by
sampling from an importance distribution g(xk|x1:k−1, y1:k)
and the weight of the samples are computed as

wik =
p(yk|x̃ik)p(x̃ik|xik−1)

g(xk|x1:k−1,y1:k)
. (11)

To avoid degeneracy, the resampling process generates
a set of unweighted particles according to their impor-
tance weights to avoid degeneracy. In the bootstrap filter,
g(xk|x1:k−1,y1:k) = p(xk|xk−1) and the weights become
the observation model p(yk|xk). The basic idea of the par-
ticle filter is to represent the posterior density by a set of
random samples with associated weights and to compute es-
timates of these states, such as expected values, using these
weights and samples.

Prediction model p(xk|xk−1) uses the second-order au-
toregressive process, and the noise model is defined by the
Gaussian function. The observation model uses the Hue-
Saturation-Value (HSV) color histogram, which decouples
chromatic information from shading effects, for robust il-
lumination changes in environments of moving camera [8].
HSV histogram is composed of M = MhMs +Mv bins and
hk(z) is defined to the bin index at location z in time k.

The color distribution qk(x) = {qk(m;x)}m=1...M at
time k is given as

qk(m;x) = K
∑

z∈R(x)

δ[hk(z)−m], (12)

where δ represents the Kronecker delta function, K is a nor-
malization constant, and R(x) is the sampled object region.
For measuring the similarity between the observation and the
reference models, Bhattacharyya distance measurement is
used as

B[q∗,qk(x)] =

[
1−

M∑
m−1

√
q∗(m)qk(m;x)

] 1
2

, (13)
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where q∗ represents the reference color model. The reference
distribution is obtained at the initial time k0 .

Similarity measurement of the observation model is de-
fined by Bhattacharyya distance as

wik ∝ e−λB
2[q∗,qk(x)] (14)

For example, the maximum a posteriori (MAP) estimate
of the state at time k may be found fromN particles (samples)
as follows

xMAP
k = arg max

xi
k

wik for i = 1, ....., N. (15)

Finally, xMAP
k among the CPs is selected as the state of

the object at the time k. The CPs generated by the PP can con-
tinuously track the detected object, and the other PPs keeps
moving for detecting objects. When an object being tracked
disappears, the corresponding PP is reset and resampled.

In the first layer, if PPs are resampled by motion distribu-
tion in both tracked and untracked regions, PPs can be stuck in
the tracked moving object by CPs. To overcome this problem,
the motion in the tracked object region is set to zero. Some of
false positive detection can be solved by selecting the object,
which is sequentially detected 4 times.

As shown Fig. 4, result of the second layer particle filter-
ing show that a moving object can be tracked by CPs.

(a) Frame 21 (b) Frame 25 (c) Frame 29

Fig. 4. Result of second layer particle filtering. (magenta:
CPs, green: tracked objects region)

3. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the proposed approach for si-
multaneous multiple objects detection and tracking, we tested
the algorithm in PETS2009 and PETS2006 dataset of 2000
frames whose resolution are 768× 576 [11][12] .

Experimental results of performance of simultaneously
detection and tracking are shown in Fig. 5 and Fig. 6. Exper-
imental results show that the proposed method can robustly
track the object and be worked well for general video image.

4. CONCLUSION

In this paper, we presented multiple targets tracking method
using dual-layer-based particle filtering in the visual surveil-
lance system. Conventional object tracking methods can
track the initially specified region. A boosting-based tracking

(a) Frame 1934 (b) Frame 1938 (c) Frame 1939

(d) Frame 1943 (e) Frame 1950 (f) Frame 1954

Fig. 5. Experimental results of performance of simultane-
ously detection and tracking (yellow: PPs, magenta: CPs, red:
detected objects, green: tracked objects region)

(a) Frame 2 (b) Frame 6 (c) Frame 7

(d) Frame 37 (e) Frame 59 (f) Frame 63

Fig. 6. Experimental results of performance of simultane-
ously detection and tracking (yellow: PPs, magenta: CPs, red:
detected objects, green: tracked objects region)

method requires an intractably long processing time because
objects should be detected in the entire image. To solve
these problems, we used DLPF that consist of detection and
tracking layers. To simultaneously detect and track multiple
targets, parent-particles (PP) and child-particles (CPs) based
on DLPF ware generated and used.

Based on experiment results, the proposed simultaneous
multiple objects detection and tracking method can be ap-
plied such as the PTZ camera in video surveillance system,
the human computer interaction, and the intelligent transport
system.

In the future research, we will provide comparison results
between the proposed and existing methods to evaluate the
performance.
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