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ABSTRACT

We propose a novel approach to align unsynchronized video
sequences of the same dynamic scene that can be subframe
accurate and is applicable for different frame rate problem.
The proposed approach relies on matching motion trajecto-
ries and it is assumed that the object moves on a planar sur-
face. By exploring the invariants of planar trajectories under
projective transformation, the cross ratio as an invariant fea-
ture is computed for each point along the trajectories and the
similarity between invariant features of different trajectories
is measured with a distance that takes into account the statis-
tical properties of the cross ratio. Then the smooth high frame
rate trajectory is synthesized for searching subframe tempo-
ral displacement under our alignment framework. The exper-
imental results with synthetic and real-world sequences show
that our approach achieves fairly accuracy and efficiency in
subframe temporal alignment of the multiple unsynchronized
video sequences.

Index Terms— Video synchronization, Subframe tempo-
ral alignment, Projective invariants, Matching trajectories.

1. INTRODUCTION

Fig. 1: A multi-camera system setup. An object moving on
a planar surface is recorded by several cameras at different
viewpoint. There is an overlapping among the three videos.
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Along with the rapid development of software and hard-
ware technology of computer vision, many videos needed to
be analyzed and processed, such as those from visual surveil-
lance system, industry control equipment, medical testing in-
struments, traffic management center, military and science re-
search field. Furthermore, the number of video sequences
capturing the same scene has also increased from 1 to N (N
is typically larger than 2), as illustrated in Fig.1. Typically,
when a group of cameras are placed at different viewpoints,
the captured videos may look very different from each other.
Moreover, when cameras start asynchronously, even with dif-
ferent frame rate, there would be an unknown time offset
between them. How to determine the temporal relationship
between multiple video cameras effectively and accurately
has attracted considerable attention of researchers. In recent
years, many algorithms have been proposed to resolve this
problem for specific domain, such as video super-resolution
reconstruction, sport motion analysis, camera calibration, 3D
visualization and gait recognition.

Several works have been proposed such as the work by
Caspi and Irani [1] which estimates the temporal and spa-
tial shift parameters jointly in an iterative framework; and the
work by Padua and Kutulakos [2], which uses a linear video
to align multiple video sequences. A nonlinear dynamic time
warping function is computed to find temporal shift between
video sequences [3]. In [4] audio sequences as addtional in-
formation is used to synchronize videos, by detecting and
matching flashes present generated by still cameras. Most
previous approaches can only estimate the integer frame ac-
curate offset, while a few methods achieve subframe accurate
offset. However, very few previous works consider the prob-
lem of temporal alignment among videos with different frame
rates.

With respect to the above approaches, our method is more
suitable for the task of arbitrary time shift and frame rate dif-
ferences, in particular it’s highly robust with respect to noise
that often occur along trajectories. We capitalize a new ge-
ometric invariant feature (cross ratio) to synchronize videos,
which was not considered in earlier studies (models such as
2D homography, fundamental matrices, 3D rotations or affine
projections [5] have been used). While the present study is
related to recent approaches in invariant feature-based trajec-
tory recognition [6] and dynamic depth recovery from unsyn-
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chronized video streams [7]. The main difference between
the proposed method and those in [6, 7] is how the cross ra-
tio is constructed. Moreover, the proposed framework cre-
ates a smooth trajectory with high frame rate. Consequently,
the proposed method does not need manual alignment of the
coarse temporal offset (as done in [7]).

The rest of the paper is organized as follows. Section
2 formulates the problem of subframe temporal alignment.
Section 3 describes the projective invariants of planar trajec-
tories and the method of comparing the invariants. Section
4 presents our alignment algorithm framework for subframe
temporal alignment. Section 5 discusses the simulation and
real-world experiment results. Finally, the conclusion and fu-
ture work is presented in Section 6.

2. PROBLEM FORMULATION

In the multi-camera system, the classic pinhole camera model
is adopted to describe the image acquisition process, which
defines the geometric relationship of mapping a 3D point onto
a 2D image plane. Typically, any two images of the same pla-
nar surface in space are related by a projective transformation
in projective geometry. Fig.2 shows an example of the motion
trajectories obtained from 3 videos. Although they record the
same dynamic scene, they seem to vary widely due to their
different start time, viewpoint, and frame rate.

NTSC (30fps (frames per second)) and PAL (25fps) are
the two common formats for video recording with various
kinds of video frame rates: 12/24/48/50/60/100/120/240fps.
When the reference video and the second video are recorded
in different frame rates, this issue should be taken into ac-
count in sub-frame video synchronizing algorithm. The other
issue is how to automatically find the temporal shift between
two videos without apriori knowledge, i.e. knowing the order
of which video is recorded first as well as which video has
ended first, or whether the two videos are recorded at almost
the same time.

(a) Trajectory 1 (b) Trajectory 2 (c) Trajectory 3

Fig. 2: Multi-view images of a planar scene: (a) Trajectory
obtained in video1, with a low frame rate. (b) Trajectory ob-
tained in video2, with a low frame rate. (c)Trajectory ob-
tained in video3, with a high frame rate.

For the case with two cameras, let P1:{p1 (t)} , t =
[1...N ] be the trajectory point sequence obtained from the
reference video S, which is recorded at f1fps, where p1 (t) =

(x (t) , y (t)) denotes the image coordinates of the trajectory
point, t = [1...N ] denotes the frame index number. Simi-
larly, P2:{p2 (t′)}, t′ = [1...M ] is defined as the trajectory
point sequence obtained from the second video S′, which is
recorded at f2fps. The temporal displacement between S and
S′ can be expressed as follows:

t′ = R · t+ ∆t (1)

where, R = f2
f1

, and ∆t is the subframe shift.

3. PROJECTIVE INVARIANTS OF TRAJECTORIES

3.1. Computing Cross Ratio

Cross ratio is the most important projective invariant in the
sense that it is preserved by the projective transformations of
a projective line. In particular, given four distinct collinear
points A, B, C and D in R2 (shown in Fig.3(a)), the Euclidean
distance between two points A and C is denoted as AC .
Then, one definition of the cross ratio is:

(A,B;C,D) =
AC ·BD
AD ·BC

(2)

According to planar projective transformation theory, we
have the following conclusion:{

(A,B;C,D) = (A′, B′;C ′, D′)

(A,B;C,D) = (A′′, B′′;C ′′, D′′)

⇒ (A′, B′;C ′, D′) = (A′′, B′′;C ′′, D′′) (3)

(a) (b)

Fig. 3: Cross ratio of collinear points. (a) depicts the invari-
ance property cross ratio under projective trasformation. (b)
the proposed method to compute cross ratio along trajectory.

As mentioned before, since cross ratio is invariant under
projective transformation, we create unique cross ratio for
each point along the trajectory, as shown in Fig.3 (b). The
cross ratio τ(t) is calculated for point p(t) by using its neigh-
bouring points p(t−2k),p(t−k),p(t),p(t+k),p(t+2k) where
k is an integer value chosen according to the trajectory. The
detail of calculating process is expressed as follows:

τ (t) = g (p (t)) =
A1A3 ·A4A2

A1A2 ·A4A3

(4)
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- A1 ← p (t− k) , A4 ← p (t+ k)

- l1 = p (t)×p (t− 2k), line through p(t) and p(t− 2k),

- l2 = p (t)×p (t+ 2k), line through p(t)and p(t+ 2k),

- l3 = p (t− k) × p (t+ k), line through p(t− k) and
p(t+ k),

- A2 = l1 × l3, intersection between l1 and l3,

- A3 = l2 × l3, intersection between l2 and l3

3.2. Measure the Similarity

It is shown in [8] that a probability density function for the
cross ratio can be computed in closed form, together with the
corresponding cumulative density function. A distance mea-
sure derived from this function has been proposed in [9] in the
context of object recognition. The distance is computed with
respect to the cumulative distribution function:

d (τ1, τ2) = min (|F (τ1)− F (τ2)| , 1− |F (τ1)− F (τ2)|) (5)

where F (x) is defined as follows:

FX (x) = P (X < x)


F1 (x) + F3 (x)
1/3
1/2 + F2 (x) + F3 (x)
2/3
1 + F1 (x) + F2 (x)

if x < 0
if x = 0
if 0 < x < 1
if x = 1
if 1 < x

(6)
where

F1(x) = 1
3

(
x · (1− x) · ln(x−1

x )− x+ 1
2

)
F2(x) = 1

3

(
x−x·ln(x)−1

(x−1)2

)
F3(x) = 1

3

(
(1−x)·ln(1−x)+x

x2

)
In the proposed method of calculating the cross ratio,

there are a few special situations, such as p(t− 2k), p(t− k),
p(t) are collinear, so the point A1 and A2 would be the same
point. Meanwhile the distance value of A1A2 is zero. In
that situation, A1A2 will be replaced by an infinitely small
quantity, then according to the formula, τ(t) is considered to
be infinite. In our experiment, if A1A2 or A4A3 equals to
zero, we use a large value

(
1× 106

)
instead of infinite value

as the calculating result of τ(t).
The selection of the parameter k is closely related to

the length and the variability of trajectory. If a trajectory
changes quickly, a smaller value for k is an appropriate
choice, whereas a slowly varying trajectory would utilize a
larger value for k. As mentioned before, a trajectory seg-
ment with length of 4k is used to compute the cross ratio for
each trajectory point, so this length should reflect the unique
representation between different parts of the same trajectory.

4. SUBFRAME TEMPORAL ALIGNMENT

4.1. Synthesis High Frame Rate Trajectory

Objects in nature change or move in a continuous way. When
people use a camera to record the dynamic scene, it is actually
a sampling of a continuous signal, while the sampling rate is
the camera frame rate. It’s tempting to think that if we can
get more sufficient sample data points, we can form a more
realistic trajectory to help us find the relationship between the
videos. In many engineering practice and scientific experi-
ments, one usually use either data fitting or data interpolation
to obtain more sample points. We adopt the cubic spline inter-
polation method to address this problem. A series of unique
cubic polynomials are fitted between the adjacent two trajec-
tory points and with the stipulation that the curve obtained be
continuous and appeared smooth. This data interpolation pro-
cess should be done inX and Y image coordinates separately,
then a smooth high frame rate trajectory will be produced.
In our paper, the high frame rate trajectory P ′2:{p′2 (t′)} for
the second trajectory P2:{p2 (t′)} is generated through this
method, which contains more trajectory points.

4.2. Temporal Alignment Framework

Let f1, f2 and f3 denote the frame rates of trajectory P1,
P2 and P ′2 respectively. f3 is chosen using (7), where
LCM(f1, f2) is the least common multiple of f1 and f2,
a is a positive integer value and selected for practical need.
In particular, the higher the value of the f3 is, the higher the
calculation accuracy.

f3 = LCM(f1, f2) · a, a ∈ N∗ (7)

the formula can be expressed as follows:

1

f1
= b · 1

f3
,

1

f2
= c · 1

f3
, b, c ∈ N∗ (8)

Fig. 4: Structure of temporal alignment method.

Obviously, there is an overlapping in time between two
sequences to provide enough information for the aligning al-
gorithm. Let T1 be the overlapping region in trajectory P1,
and T2 be the corresponding overlapping region in trajec-
tory P ′2. Moreover, the overlapping time should not be too
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Table 1: Multi-video synchronization results.

Trajectory Ground truth Average frame error Average frame error Average frame error Average frame error
(R,∆t) \Maximum frame error \Maximum frame error \Maximum frame error \Maximum frame error

(10% noise) (20% noise) (30% noise) (40% noise)
Tra1 (0.5, 5.63) 0.0478\ 0.1300 0.0983\ 0.3000 0.1881\ 0.5700 0.2015\ 0.6900
Tra2 (5/6, 7.12) 0.0375\ 0.1167 0.0807\ 0.2750 0.1338\ 0.4750 0.1677\ 0.5000
Tra3 (1.0, -4.35) 0.0512\ 0.2000 0.0978\ 0.3200 0.1504\ 0.8700 0.1547\ 0.6600
Tra4 (1.2, 2.56) 0.0413\ 0.1680 0.0695\ 0.1920 0.1118\ 0.3840 0.1288\ 0.5040
Tra5 (1.6, -3.89) 0.0666\ 0.2020 0.1256\ 0.3300 0.1622\ 0.4740 0.2072\ 0.6140
Tra6 (2.0, 4.27) 0.0460\ 0.1700 0.1294\ 0.4100 0.1506\ 0.5500 0.2042\ 0.6900

short, because smaller overlapping time tends to create a sim-
ilar part of trajectory that causes inaccurate alignment result.
The aligning process is shown in Fig.4. Since there are sev-
eral possibilities of (T1, T2), we perform an exhaustive search
over time shifts to calculate the average distance between T1
and T2, which is denoted as follows:

d(T1, T2) =
1

n

n∑
i=1

d(τ1(t), τ2(t)), T1 ⊆ P1, T2 ⊆ P ′
2 (9)

Here, n is the number of points contained in trajectory T1.
The value (T1, T2) is closer to the real overlapping regions,
the smaller d(T1, T2) will be.

5. EXPERIMENT RESULTS

In the first experiment, 6 pairs of multi-view planar trajec-
tories (shown in Fig.5) with provided ground-truth param-
eters (R,∆t) were generated and corrupted with an along-
trajectory noise to simulate the tracking error. The parameter
k was selected as 6, 10, 6, 6, 8, 7 for Tra1 to Tra6. The exper-
iment was repeated 100 times respectively with different level
of noise variance, from 10% to 40% of the average distance
between points. The estimated ∆t′ was compared with the

ground-truth ∆t, the average frame error 1
100

100∑
i=1

|∆t′i −∆t|

and the maximum frame error max(|∆t′i −∆t|), i = 1...100
were recorded in Table 1. From Table 1, we can see that our
method is highly robust to noise.

In the second experiment, a dynamic scene of moving a
baseball on the wall was recorded by 3 cameras from multi-
view points with 80fps, 60fps, 30fps respectively, shown in
Fig.6. We tracked the centroid of the baseball to obtain trajec-
tories by block track method, and the three trajectories con-
sisted of 320, 260 and 150 points individually. Fig.6(c) was
assumed to be the reference video and we set k=9. We im-
proved the classical temporal alignment method [1] to suit for
different frame rates problem and the calculated temporal dis-
placement were ∆t=−74.5133 for Fig.6(a) and ∆t=−35.07
for Fig.6(b). By contrast, our results were ∆t=−74.5367 and
∆t=−35.09. Both alignment results were very similar, which
proves that our method is effective and practical.

(a) Tra 1 (b) Tra 2 (c) Tra 3

(d) Tra 4 (e) Tra 5 (f) Tra 6

Fig. 5: 6 pairs of multi-view simulation trajectories with dif-
ferent frame rate and subframe temporal shift.

(a) The left view (b) The middle view (c) The right view

Fig. 6: An example of multi-video.

6. CONCLUSION AND FUTURE WORK

In this paper, we present a method to synchronize multi-
view videos with different frame rates that can achieve high
subframe accuracy. The proposed method uses theory of
collinearity of points and the invariance of cross ratio under
projective transformation to compare trajectories. The over-
lapping region of two trajectories is then analyzed carefully
and a smooth high frame rate trajectory is synthesized for
searching the subframe temporal offset. The results of exper-
iment verify that our method is effective and robust. Future
research plan consists of investigating how to efficiently de-
termine the parameter k, as well as extending the proposed
algorithm from 2D planar scenes to general 3D scenes.
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