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ABSTRACT

Optical flow is widely used for describing motion cues in the
scene, but limited by slow estimating speed and illumination
sensitivity. To handle both problems, this paper focuses on
improving speed and accuracy of optical flow using RGB-D
data and enhancing its robustness on motion description vi-
a fusing depth flow which is obtained only using depth da-
ta. First, salient motion regions (SMRs) are detected between
depth frames which have good character on motion descrip-
tion for they all locate on moving objects. Then, depth flow
is calculated to describe 3D motion for each SMR and direct-
s fast orientation region growing on depth map. Thus larger
motion regions are grown, and region-based optical flow es-
timation is conducted on grown regions. Estimation error is
reduced and noise is inhibited due to depth constraints. Fi-
nally, a fusion scheme is adopted which combines depth flow
and optical flow for better 3D motion description in the scene.
Experiments on a RGB-D video data sets recorded in various
complex scenes demonstrate the improved speed and robust-
ness of the proposed method.

Index Terms— 3D optical flow, depth flow, RGB-D

1. INTRODUCTION

Optical flow is one of the traditional techniques in carrying
out motion analysis. It measures the apparent velocity pattern
of moving structures in an image sequence [1]. However, 2D
optical flow is just projection of 3D motion of the world on 2D
image plane and cannot reflect all motion cues. Computing
3D motion of a scene is a basic task in computer vision that
has been approached in a wide variety of ways. Structure-
from-motion [2][3] method is used to compute 3D scene
structure and relative motion from a single monocular video
sequence. However, without strong enough priori assump-
tions about the scene, general non-rigid motion cannot be
estimated from a single camera. Another common approach
to recover 3D motion is motion-stereo which uses multiple
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cameras and combine stereo and motion [4]. However, nearly
all motion-stereo algorithms assume the scene is rigid and
require fully calibrated cameras. Recently, with rapid devel-
opment of range sensors many researches introduced depth
data to motion analysis. M.B. Hotle et.al. use depth as well as
intensity images captured by a SR4000 camera to extract 3D
optical flow for motion recognition [5]. However, their 3D
optical flow vectors is obtained directly via annotating each
point on depth map with 2D optical flow vector, resulting in
higher computational complexity than dense 2D optical flow.
C. Wang et.al. use depth data captured by PrimeSense sensor
for depth motion detection and multi-objects tracking [6].
However, only depth data cannot promise dense and subtle
motion description compared with optical flow. B.B. Ni et.al.
combine RGB and depth data captured by Kinect sensor to
describe motion for activity recognition [7]. But depth infor-
mation is not fully exploited and it only assists depth-level
division of STIP descriptors.

Directly extracting dense 3D optical flow using state-of-
the-art optical flow methods [8][9] are far more computation
consuming and cannot fully utilize depth cues. Indeed, the
basic function of 3D optical flow is to describe motion, so
it is reasonable to first adopt a fast way to localize salien-
t motion regions in the scene. Motivated by this, a salient-
motion-heuristic scheme for fast 3D optical flow estimation
is proposed. First, regions with salient depth motion are ex-
tracted only using depth data. Then ability of depth on motion
description is further exploited, and a kind of region-based
velocity named depth flow is calculated. Directed by depth
flow, a fast orientation region growth is conducted for larg-
er motion regions and based on which dense optical flow is
estimated finally. Our contribution lies in three aspects: One
is the improved speed for pre-detected salient motion local-
izes and lessens flow estimation regions. The second one
is the inhibition of noise commonly caused by illumination
change yet to which depth cue is robust. The third is the fu-
sion scheme of optical and depth flow makes both cues com-
plementary for more robust motion description. Contrast ex-
periments show the proposed method not only reduces com-
putational cost but also reduces noise interference and multi-
tracking experiments under various complex situations verify
robustness of the fusion scheme.
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Fig. 1: A brief illustration of previous 3D optical flow estimation methods (left part) and the proposed method (right part).

2. SALIENT MOTION HEURISTIC 3D OPTICAL
FLOW ESTIMATION

2.1. Salient Motion Detection

Different from intensity images, points in depth images in
essence represent 3D positions in real world, thus depth im-
ages sequence essentially represents the variation of these po-
sitions. As shown in Fig.2, points x1 and x2 both change
their 3D positions during time t−1 to t+1, so their depth val-
ues also change. In our previous work [6][10], the concept
‘positive motion’ is defined to indicate a specific kind of sig-
nificant depth change in consecutive depth images. B.B. Ni
et.al. also present the similar concept backward motion and
forward motion to describe depth motion [7] .
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Fig. 2: Illustration of salient depth change, salient motion
region Xt

fw and Xt
bw, and their inner and outer boundaries.

Depth frames in t−1 and t+1 are combined together to ex-
tract motion cues in current frame t.

Under the assumption of smooth motion, the significant
depth change of a point xi normally indicates that position
of xi changes from one object to another and there exists a
considerable depth difference between them. It comes to a
natural idea that we may utilize points which exhibit salient
depth change between consecrative framesDt−1 andDt+1 to
describe the motion in the current frame Dt. Based on this
intuition, positive motion point (PMP) is proposed. A great
nature of PMP is that ideally they all locate on moving ob-

jects, thus brings bonus to describe and analyze motion cues.
This specific salient motion point is defined as:

Xt
pm = Xt

fw

⋃
Xt
bw where

Xt
fw = {x|Dt(x)−Dt−1(x)>τpm, Dt−1(x)>τur}

Xt
bw = {x|Dt(x)−Dt+1(x)>τpm, Dt+1(x)>τur}

(1)

At a given coordinate x, Dt(x) is pixel value of depth map
D at time t. τpm is a threshold indicating whether there is a
salient depth change in xi. τpm is set to define the salient level
of depth change. τur is set to remove salient depth change of
unstable regions [6], which is normally caused by hardware
drawbacks of the range sensor [7][11] ,such as smooth surface
and transparent objects.

2.2. Orientation Region Growing and 3D Depth Flow

Suppose there are K connected regions in points set Xt
pm on

depth map. For each region X(k)
pm, its boundary point set can

be divided into inner boundary points set and outer boundary
points set via gradient analysis on depth map, termed as X(k)

ib

and X(k)
ob respectively. A brief illustration is given in Fig.2.

Normally, the outer boundary is the edge of a salient motion
region X(k)

pm in current frame, and the inner boundary is the
edge of the same region in the consecutive frame D̂t, where
D̂t is defined as:

D̂t =

{
Dt−1 for X(k)

pm ∈ Xt
fw

Dt+1 for X(k)
pm ∈ Xt

bw

(2)

Given inner and outer boundaries, 2D velocity of region X(k)
pm

can be calculated by:

v(k) = δ ·
(
X

(k)
ib −X

(k)
ob

)
(3)

where X indicates center of point set X and δ is defined as:

δ =

{
1 for X(k)

pm ∈ Xt
fw

−1 for X(k)
pm ∈ Xt

bw

(4)
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Fig. 3: Illustration of salient motion regions before and after
ORG with α=0.5 and their corresponding 3D depth flows.

Then 2D velocity v(k) of kth salient motion region can
direct us to perform orientation region growth (ORG) to get
larger motion region on moving object’s surface. In order to
boost speed of region growth, besides orientation guidance,
state matrix Ŝ is defined to avoid repeated growth on the same
location for two or more regions. Ŝ(x) is set to 1 if x is
grown. ORG is conducted on depth map, formulated as:

X(k)
rg =

⋃
xj∈X(k)

ib

⋃
t0∈[0,α]

(
xj+t0(−δ · v(k))

)
s.t. ∀x ∈ X(k)

rg , D(x) ∈ [dl, dh]; Ŝ(x) = 0

(5)

where α is set to control growing scale. Here, [dl, dh] is the
depth interval constraints for growing. ORG actually can be
summarized as a process of region growth on depth map, s-
tarting from inner boundary of a salient motion region, along
with orientation (when δ equals −1) or inverse orientation
(when δ equals 1) of the region’s 2d velocity (given in Eq.(3)).

Given ORG region X(k)
rg of kth salient motion region, its

velocity along depth axis can be obtained by calculating aver-
age depth change between two consecrative frames:

v
(k)
d = δ ·

(
Dt

(
X

(k)
pm

)
− D̂t

(
X

(k)
pm

) )
(6)

Where D(X) is used to indicate mean depth value of a point
set. If X(k)

pm belongs to Xt
fw, D̂t corresponds to Dt−1 and

δ equals 1, and if X(k)
pm belongs to Xt

bw, D̂t corresponds to
Dt+1, since the time sequence inverse, δ should equal to −1,
this makes the velocity always describe motion from current
frame to next frame. Combined 2d velocity v(k) with depth
velocity v(k)d , 3D depth flow of the kth salient motion region
is proposed to describe its 3D motion, formulated as:

f
(k)
d =

(
T (v(k)), T (v

(k)
d )
)

(7)

Where T indicates heterogeneous data conversion because
v(k) and v(k)d have different length unit (image coordinates
and range axis). To simplify symbols, we use T for all het-
erogeneous data conversion in this article.

2.3. Fusion Scheme of 3D Optical Flow and Depth Flow

After ORG, salient motion regions are fused to larger ones
by connectivity on depth map. Suppose a fused salient mo-
tion region is termed as Xsm, we proposed a region-based

optical flow method. First, a parallel implementation of
LucasKanade (LK) method [12] is utilized to estimate 2D
dense optical flow between intensity image patch I(Xsm)
and Î(X̂sm) in consecutive frame Î , where region X̂sm is the
largest points set which satisfies:

for ∀xi ∈ X̂sm, ∃x̂i ∈ Xsm√
T (‖x̂i − xi‖)2 + T (|D̂(x̂i)−D(xi)|)2 ≤ τv

(8)

τv is upper bound of 3D optical flow length. This 3D Eu-
clidean distance constraint reduces background noise and im-
prove accuracy of optical flow in salient motion region. Final-
ly, 2D optical flow is estimated on all salient motion regions.
Suppose 2D optical flow in xi is

(
vx(xi), vy(xi)

)
, its depth

component vz(xi) is calculated by:

vz(xi) = δ ·
(
D̂t

(
xi+δ ·

(
vx(xi), vy(xi)

))
−Dt(xi)

)
(9)

The final salient-motion-based 3D optical flow in any point
xi is given by:

f(xi) =
(
T
(
vx(xi)

)
, T
(
vy(xi)

)
, T
(
vz(xi)

))
(10)

Moreover, a fusion scheme is adopted to fuse optical flow
F and depth flow Fd in tracking applications, which makes
two cues complementary for each other when one is unreli-
able. Thus, motion cues can be more accurately described.
For jth target during tracking, its current motion velocity vj

is given by:
r =

1

σ( fj

‖fj‖ )
rd =

1

σ(
fj
d

‖fh
d ‖

)

vj =
r

r + rd
f j +

rd
r + rd

f jd

(11)

Where f j and f jd are optical flow and depth flow on jth target
area. r and rd indicate reliability of optical flow and depth
flow respectively. δ is variance and fi indicates mean of flow
vector set fi. As the tracking term is not the key point of the
article, it is directly verified in experiments section.

3. EXPERIMENTS AND DISCUSSIONS

To demonstrate effectiveness of the proposed method, three
groups of experiments are conducted on a RGB-D video data
set recorded via Kinect. All experiments were conducted on
a Pentimum i5− 2410M 2.3 GHZ PC with 2.0 Gb RAM.

The first group of experiments verify the speed improve-
ment of 3D optical flow estimation based on salient motion,
compared with 3D version of state-of-the-art dense optical
flow methods. The experiments is tested under various video
resolutions and processing frame rates (FPS) are given in
Table 1. SM-LK, SM-HS, SM-FFC are our salient-motion-
based optical flow methods corresponding to LK, HS and FC-
C (fast cross correlation) methods implemented in [12][13]
respectively.
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Table 1: Optical flow extraction speed (in FPS) comparison.

Resolutions 80*60 160*120 320*240 640*480

LK [[12] 76.9 45 10.1 2.3
SM-LK 113.2 86.5 35.2 10.5
HS [[12] 4.1 1.3 0.2 0.05
SM-HS 30.6 17.8 8.3 3.2
FCC [[13] 12.3 7.2 2.1 0.2
SM-FCC 63.8 21.7 8.3 1.5
CC [[12] 0.83 0.19 0.05 0.01

The second group of experiments verify accuracy of op-
tical flow via the proposed method. The statistics of optical
flow vectors of the proposed method, ground truth and LK
flow are compared which demonstrates the proposed method
is more accurate in extracting salient motion cues and is more
robust to background noise. As shown in Fig.4 (a), average
number distribution of 3D flow vectors along different vector
length per frame is given. The number of globally estimated
flow is higher than ground truth because of false extraction
in noise regions due to unstable imaging or tiny motion. On
the contrary, the proposed method can extract most flow vec-
tors with longer length and remove tiny motion which is of-
ten caused by noise in real cases. As shown in Fig.4 (b), lots
of noisy flow vectors on background are removed in the left
compared with the right one.

(a) Number distribution of 3D flow vectors along different vector
length per frame. In top-right legend, ground truth is extracted
via LK on manually-labeled salient motion region. Global flow
is obtained via LK. Salient motion is via the proposed method.

(b) An example of flow distribution in a clutter scene with a man waving
hands. The right is result via the proposed method. The left is via LK.
It is easy to see the proposed method extract salient motion on moving
body parts but inhibit noise on background caused by unstable lighting.

Fig. 4: Optical flow extraction accuracy comparison.
The third group of experiments verify the robustness of

the fusion scheme which combines 3D depth flow and 3D op-
tical flow in describing motion. Several tracking experiments
are conducted in various complex scenes.

(a) The first column shows classic optical flow when illumination sud-
denly change. The second column and third column is optical flow and
depth flow extracted via the proposed method under same illumination
conditions. The forth column is targets’ labels and trajectories.

(b) Multi-tracking under similar foreground and background, and bad
lighting conditions.

(c) Multi-tracking under severe occlusions.

Fig. 5: Robustness verification of fusion scheme combining
optical flow and depth flow for motion description.

4. RELATION TO PRIOR WORK AND
CONCLUSIONS

This paper focuses on improving speed and accuracy of opti-
cal flow and enhancing its robustness on motion description.
M.B. Holte et.al. directly transform dense 2D optical flow im-
plemented via hierarchical LK to 3D version flow, simply us-
ing depth value of each point on depth map [5] which cannot
bring speed improvement. Thus one of our motivation is to
estimate dense optical flow based on pre-detected salient mo-
tion cues, for the basic function of optical flow is representing
salient motion in the scene. For salient motion detection only
using depth data which is robust to illumination change, so
our method works fine with bad illumination. As other works
which also use depth-color fusion scheme for various appli-
cations [7][10][14][15] , but all of them emphasis on motion
description using RGB data and only utilize depth to facilitate
the former one. To the contrast, this work deeply exploit the
ability of depth on motion description and introduced depth
flow which can be fast extracted only via depth. Then, our
fusion scheme combines sparse depth flow and dense optical
flow together for more robust motion representation.

In conclusion, contribution of this work lies in speed
improvement, accuracy of 3D optical flow estimation and
robustness motion description via the complementary of
depth can optical flow. Contrast experiments show the pro-
posed method not only reduces computational cost but also
reduces noise interference and multi-tracking experiments
under various complex situations verify robustness of the fu-
sion scheme. In future work, high level motion description
based on 3D flow will be further researched.
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