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ABSTRACT
Although considerable effort has been devoted to the problem
of reconstructing compressively sensed video, no existing al-
gorithm achieves results comparable to commonly available
video compression methods such as H.264. One possible av-
enue for improving compressively sensed video reconstruc-
tion is the use of optical flow information. Current efforts
reported in the literature have not fully utilized optical flow
information, instead focusing on limited cases such as station-
ary backgrounds with sparse foreground motion. In this pa-
per, a reconstruction method is presented which fully utilizes
optical flow information to increase the quality of reconstruc-
tion. The special cases of known image motion and constant
global image motion are presented, and the performance of
the algorithm on existing datasets is evaluated.

Index Terms— Image Reconstruction, Compressive
Sensing, Optical Flow, Motion Estimation

1. INTRODUCTION

Reconstruction of compressively sensed video remains an
open problem. Progress has been made in reconstruction of
static images [1], but no currently published algorithm fully
utilizes prior knowledge of frame-to-frame correlations and
compressibility to improve reconstruction. Previous efforts
have made restrictive assumptions such as a static back-
ground [2, 3] or constant optical flow across the entire image
[4]. Clearly, a reconstruction algorithm which fully utilizes
dense optical flow information to perform multi-frame video
reconstruction would be a valuable tool and would bring com-
pressive sensing video hardware closer to commercialization.

In this paper, a method of reconstructing compressively
sensed video frames in the presence of known optical flow is
presented in Section 2.1 and applied to an existing dataset in
Section 3.1. This approach is extended to the case of unknown
but constant motion in Section 2.2, with results presented in
Section 3.2. In both cases, significant performance improve-
ments are achieved by incorporating optical flow information
in reconstruction. It is hoped that this work represents a step
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toward fast and reliable estimation of dense optical flow and
wide adoption of compressive sensing video technology.

1.1. Problem Statement

The problem of reconstructing a compressively sensed video
is briefly described in this section, and the notation used
throughout the paper is introduced. Two image vectors, x1

and x2, are known to be compressible. That is, they are
known to be sparse in some basis with inverse transform op-
erator B. These images are measured with sensing matrix M,
resulting in measurements y1 and y2. That is,

y1 = Mx1 = MBθ1 (1)
y2 = Mx2 = MBθ2, (2)

where θ1 and θ2 are k-sparse vectors forming compressed
representations of x1 and x2, respectively. M and B may be
chosen in one of several ways. Some of the most popular
methods are an IID Gaussian matrix, a random orthoprojec-
tor, or a noiselet-based pseudorandom matrix. M is a n×m fat
matrix, where n is the number of compressive measurements
to be taken and m is the number of pixels in an image. For
natural images, wavelet transforms and discrete cosine trans-
forms provide high sparsity and are good candidates for B.
Throughout this paper, an IID Gaussian sensing matrix and
Daubechies-4 wavelet basis will be used.

Since n < m, (1) and (2) are under-determined systems
and cannot be explicitly solved for x1 and x2. However, it
is well-known that θ1 can be recovered with high probability
from y1 by solving the convex optimization problem

minimize
θ

‖MBθ − y1‖2 + τ ‖θ‖1 . (3)

Many solvers have been developed for problems in the
form of (3), including GPSR [5], and SPGl1 [6, 7]. In ad-
dition, several optimization methods exist to approximately
solve a non-convex `0 minimization form of the problem[8,
9].

In the case of compressively sensed video, it is also known
that x1 and x2 are related by some linear optical flow operator
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Fu,v, where u and v are optical flow vectors in the x- and y-
directions, respectively. That is,

x2 = Fu,vx1 + η, (4)

where η is an error term representing the part of x2 which is
independent of x1. In natural images, η is sparse, a fact which
is exploited by the majority of video codecs used today.

1.2. Previous Work

In the field of video reconstruction, batch algorithms have
been proposed which recover multiple frames simultaneously
without taking advantage of correlations between frames[10].
There are also several examples in the literature of attempts to
use multi-frame information for compressively sensed video
reconstruction. However, all make restrictive assumptions on
the nature of the video sequence being reconstructed. In this
section, several existing algorithms are described, along with
their benefits and problems. Table 1.2 summarizes the char-
acteristics of the algorithms described in this section.

In [4], global optical flow is estimated from compressive
measurements of two video frames and then used to recon-
struct both frames. While useful, this method requires the two
input frames to be pure translations of one another. When op-
tical flow is not constant across the entire image or is large
(on the order of several pixels), the algorithm fails. This
method also requires the use of a highly unorthodox sensing
scheme in which compressively sensed pixels are compactly
supported on the image. A sensing matrix of this type is likely
to have undesirable properties.

In [11], dense optical flow is estimated from compressive
measurements without performing any reconstruction. When
the measurement rate is high, good estimates of optical flow
are produced. However, an unconventional sensing scheme
is again used, in which each measurement is compactly sup-
ported in one of the image’s spatial dimensions. In fact, each
compressive measurement is restricted to a single row of the
uncompressed scene.

In [2], a quasi-static background with small moving tar-
gets is assumed. This assumption allows a video sequence
to be represented as the sum of a low rank matrix, represent-
ing the background, and a sparse matrix, representing moving
objects in the foreground. The SPARCS algorithm, a greedy
pursuit derived from the CoSAMP algorithm [9], is then used
to recover the video sequence. Although the SPARCS al-
gorithm performs well when the assumptions of static back-
ground and small motion are satisfied, it quickly fails when
the background is not static or when targets are large. In addi-
tion, a relatively large number of frames (typically hundreds)
are needed to accurately estimate the background. This is
most likely a consequence of the algorithm’s failure to take
advantage of the known compressibility of the background
image when performing reconstruction.

In [3] a static background with small targets is again as-
sumed. In this case, however, the difference between two im-
ages is reconstructed. This is possible because as long as tar-
gets are small, the difference image is known to be spatially
sparse. This algorithm achieves good results as long as all
assumptions are met.

The CS-MUVI algorithm [12] most nearly achieves the
goal of fully utilizing known information, including both op-
tical flow and compressibility of individual frames. In this
algorithm, a special sensing matrix M is used which creates a
well-conditioned matrix when combined with an upsampling
operator U. The combined matrix MU is then used to re-
construct a low-resolution version of the video using least-
squares estimation. Optical flow is then estimated using this
low-resolution video and the resulting optical flow is used
to improve reconstruction of the compressively sensed high-
resolution video. This method, while highly effective, fails to
reconstruct small objects since these objects are not visible in
the low-resolution version of the video.

2. ALGORITHM DESCRIPTION

2.1. Reconstruction with Known Optical Flow

In the special case where optical flow vectors u and v are
known a priori, reconstruction is relatively straightforward
and the benefits of incorporating optical flow in a reconstruc-
tion algorithm are clear. The case of reconstruction from two
frames using forward prediction is presented here, although
this method is easily extended to include larger numbers of
frames and backward prediction. In this case, the underde-
termined system to be solved may be jointly given in matrix
form by combining (1), (2), and (4), and is described by[

y1

y2

]
=

[
MB 0

MFu,vB M

] [
θ
η

]
. (5)

θ1 can then be recovered from y1, y2, u, and v by solving
the convex optimization problem

minimize
θ,η

∥∥∥∥[ MB 0
MFu,vB M

] [
θ
η

]
−

[
y1

y2

]∥∥∥∥
2

(6)

+ τ

∥∥∥∥[ θ
η

]∥∥∥∥
1

.

Equation (6) differs from the optimization problem used in
[12] in several important ways. First, optical flow appears as
part of the objective function rather than as a constraint, al-
lowing only θ1 to be estimated and reducing the size of the
estimation problem. Second, the inclusion of ‖η‖1 in the ob-
jective function creates sparsity in the optical flow error η.
This should allow the more accurate reconstruction of small
objects and edges in the final image. The algorithm also dif-
fers from that of [4] in that no additional special properties of
the sensing matrix are required to perform motion estimation.
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Table 1. Comparison of existing video reconstruction algorithms incorporating temporal information.
Name Video sequence restrictions Sensing restrictions Comment

Jacobs et al. [4] Constant motion Compactly supported sensors
Thirumalai & Prossard [11] None (dense optical flow) Restricted to one row of image High sensing rate

SparCS [2] Static background, small targets None Batch algorithm
Background Subtraction [3] Static background, small targets None

CS-MUVI [12] None (dense flow) Hadamard-derived sensing matrix
Proposed Algorithm Constant or known motion None

The case of η ≈ 0 will also be examined; this is a reason-
able assumption for several useful applications of compres-
sive sensing. If η ≈ 0, (6) becomes

minimize
θ

∥∥∥∥[ MB
MFu,vB

]
θ −

[
y1

y2

]∥∥∥∥
2

+ τ ‖θ‖1 . (7)

2.2. Reconstruction with Constant but Unknown Optical
Flow

An interesting special case arises when optical flow is known
to be constant across an entire image; that is, when u and
v are constant vectors. This is generally the case for aerial
surveillance video, an important potential application of com-
pressive sensing video technology. In this case, only a single
frame must be reconstructed in order to estimate flow. This is
possible because of the ability to perform correlations in the
compressive domain [13].

Let x̂1 be an estimate of x1 acquired by solving (3). u =
u1 and v = v1 may then be estimated maximizing the esti-
mated correlation with a matched filter:

maximize
u,v

y>2
(
MM>

)−1
MFu1,v1x̂1. (8)

Once u and v have been determined, two-frame reconstruc-
tion may be carried out as in (7) or (6). Although (8) ap-
pears straightforward, several practical considerations arise
when attempting to apply it. Equation (8) is, in general, a
non-convex problem and is relatively expensive to compute.
However, if u and v are quantized, an exhaustive search is of-
ten feasible, for instance if the image size is small or the mo-
tion vector magnitude ‖[u, v]‖2 is bounded. Several efficient
search algorithms also exist to approximately determine op-
tical flow; Zhu and Ma’s diamond search algorithm [14] was
used in this work . The correlation is also heavily affected by
the way the flow operator handles the edges of the image. In
order to avoid this concern, x̂1 is first windowed before ap-
plying the optical flow transform. It was also empirically de-
termined that reconstruction was superior when optical flow
was non-zero, even if the ground truth optical flow was zero.
Because of this, u and v are forced to take non-zero values:
if a zero value is found to be optimal, the next-best value is
chosen instead.

3. RESULTS

3.1. Known Optical Flow

The algorithm in Section 2.1 was tested using the Middle-
bury optical flow dataset’s “Venus” image, a stereo image for
which known ground truth motion vectors are provided [15].
The image was preprocessed by shrinking by a factor of 2
and cropping to size 128×128. Sensing was performed using
an IID Gaussian sensing matrix using n = 4915 measure-
ments, for a sensing rate of 0.3. Figure 3.1 shows the results
of reconstruction of a single frame, along with simultaneous
reconstruction of both frames using known optical flow infor-
mation. The PSNR was increased from 21.12 dB to 23.80 dB
by the use of optical flow information. An improvement in the
perceptual quality of the reconstruction is also visible. Figure
3.1 shows PSNR vs. number of sensors for single-frame and
2-frame reconstruction. The benefits are clear, particularly at
low sensing rates.

3.2. Constant Optical Flow

The problem of reconstruction under constant but unknown
optical flow was evaluated using the PETS2000 dataset. A
segment of the video with no activity was selected and used
to generate a pair of 128×128 test frames, represented in vec-
tor form as x1 and x2, in which x2 experienced a small shift
relative to x1. y1 and y2 were generated using n = 1024 sen-
sors, and the algorithm described in Section 2.2 was used to
reconstruct the image. Figure 3.2 compares single-frame and
two-frame optical flow based reconstruction algorithms. The
two-frame reconstruction is clearly perceptually superior and
has a PSNR of 27.21 dB, a 2.81 dB improvement over the
single-frame reconstruction. Reconstruction was performed
both with a term η for imperfect optical flow (Equation 6) and
without it (Equation 7). The η term was found to be neces-
sary in order to achieve improved PSNR relative to the single-
frame method; only results from this method are presented.

4. CONCLUSION

Optical flow is a key element of modern video codecs, but
has not been fully used in reconstruction algorithms for com-
pressively sensed video sequences. This is mainly due to the
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(a) ground truth

(b) single-frame (c) two-frame

Fig. 1. Reconstruction with known optical flow for 128×128
image with n = 3481 measurements (sensing rate = 0.212).

difficulty of estimating optical flow without an existing high-
quality reconstruction of the image. However, once optical
flow is known, clear benefits are available from utilizing op-
tical flow information. This was shown in Section 3.1, where
the problem of reconstruction under known optical flow was
presented as a convex optimization.

A potential work-around to the problem of optical flow es-
timation without a high-quality image was described in Sec-
tion 2.2. In the special case considered, optical flow is known
to be constant across the entire image.This allows optical flow
in subsequent frames to be estimated without reconstruction
from a single reconstructed frame. The authors believe that
this method is likely to be applicable to the case of small
moving targets in a moving frame, as the optical flow error
parameter η should be able to accommodate them. However,
this claim is speculative and is beyond the scope of this paper.

The authors hope that this work will serve to advance the
development of compressive sensing video cameras by in-
tegrating existing ideas of optical flow based reconstruction
from conventional video codecs. A robust reconstruction al-
gorithm with high performance could dramatically reduce the
cost and data rate requirements of video sensing systems at a
wide range of light wavelengths.

Fig. 2. PSNR of reconstructed vs. original signal as a function
of number of compressive measurements.

(a) ground truth

(b) single-frame (c) two-frame

Fig. 3. Comparison of single-frame and two-frame recon-
struction for constant optical flow.
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