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ABSTRACT

In this paper, we propose a new Motion Estimation al-
gorithm based on low discrepancy sequences, essentially
quasi-random sequences used as point sampling to compute
multivariate integral approximations by methods such as
Monte-Carlo. Our evaluation of the proposed method took
into consideration PSNR mean values, computational effort
and bit-rate. The results support that the proposed algorithm
entitled Quasi-Random Search (QRS) is able to significantly
reduce computational effort by 73,06% in average when
compared to the UMHS algorithm while maintaining video
quality and a slight increase in the bit-rate.

Index Terms— motion estimation, video coding, block-
matching, low discrepancy sequences

1. INTRODUCTION

Motion Estimation (ME) is a simple, elegant and efficient
manner to identify and express motion and, therefore, is fre-
quently chosen by video coding standards such as MPEG-4,
H.264/AVC and the emerging H.265/HEVC [1, 2].

ME methods identify blocks in the current frame that best
match blocks on the previous frame (reference frame). In gen-
eral terms, ME uses a search window specified in the refer-
ence frame for each block within the current frame. Since
there is a greater likelihood that similar blocks are near the
block position, the search window must contain a region cen-
tered in the blocks original position. Each block within the
search window is named a candidate block for any of these
blocks may be chosen as the best match by the ME.

Consider a block M × N and a search window (2dm +
1) × (2dm + 1), where dm is the maximum displacement.
The current frame’s blocks are compared with the reference
frame’s blocks and compared using some similarity measure.
One such measure for example is the Sum of Absolute Differ-
ences (SAD) expressed by:

SAD(i, j) =

M
∑

m=1

N
∑

n=1

|sk(m,n)− sk−1(m+ i, n+ j)|, (1)

where sk(m,n) is the intensity of the current block in the po-
sition (m,n) and sk−1(m + i, n + j) is the intensity of the
candidate block in the position (m+ i, n+ j), where i and j

are the candidate block’s displacement in the search window.
The candidate block with the least SAD is chosen as the best
match, specifying the motion vector. According to [3], nearly
89,2% of the computational effort of the coding process re-
lates to the ME. Therefore, reducing the ME computational
effort is a topic which inspires great interest.

In order to reduce ME’s computational effort, fast search
algorithms have been developed [4, 5, 6, 7, 8]. These algo-
rithms reduce the number of potential candidate blocks while
aiming for a high coding efficiency. The Unsymmetrical-
cross Multi-Hexagon grid Search (UMHS) algorithm that ef-
fectively reduces the number of candidate blocks within the
search window has been used by H.264/AVC Reference Soft-
ware [5].

In a related work, [9] presents an statistical analysis on
the performance of the UMHS algorithm and introduces an
early termination step based on adaptive threshold. These
thresholds both maintain the rate-distortion (RD) [10] opti-
mization while reducing significantly the ME’s processing
time. As a result, the method proposed by [9] was adopted by
H.264/AVC Reference Software. The results presented in [9]
are compared to the proposed method in this paper (see Sec-
tion 4). This work focuses in the reduction of computations
effort by ME with the usage of low discrepancy sequences
which presents a uniform coverage throughout the region as
well as a faster computation of the similarity measure used
by block matching.

Another work focused on computation effort reduction for
ME based on adaptive threshold early termination was pre-
sented by [11]. In addition to the early termination, [11] pro-
posed a division of the search window into sectors accord-
ing to the occurrence probability in a way that allowed the
algorithm to satisfy the termination criteria, a low threshold,
quicker. The sectors’ occurrence probabilities were computed
by the H.264/AVC Reference Software based on the statisti-
cal characteristics of RD cost. This evaluation was also used
to determine the threshold value.

The work presented in [12] proposed a new ME algo-
rithm using a non-translational movement type. The move-
ment model chosen is based on image recording techniques
widely used in computer vision and augmented reality [13,
14]. Not only did the authors use the H.264 block partitioning
system, but also 32×32, 32×16 and 16×32 block sizes. As
for RD cost, the algorithm establishes a decision process be-
tween translational and non-translational movement types. In
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this particular case, the lowest RD cost is chosen, this implies
in a greater complexity cost for the motion vector computa-
tion.

A ME algorithm entitled Simulated Annealing Adaptive
Search (SAAS) proposed by [8] is based on the statistical
analysis of the motion vectors coupled with the Simulated
Annealing concept. The SAAS algorithm divides the search
window into twenty-four regions where each region defines a
search direction. The discussed work uses a initial prediction
similar to the UMHS algorithm as well as its local refinement.

The work in [15] presents a new ME method based on
adaptive maximum displacement. If the maximum displace-
ment value is not correctly specified, some ME methods are
unable to properly encode the input sequence, presenting im-
age quality loss. To overcome this difficulty, the authors pro-
pose to consider vertical and horizontal movement separately
resulting in a rectangular search window. The method was
evaluated using the H.264/AVC Reference Software and the
results shows a insignificant loss to PSNR.

Taking into consideration the referenced works, one can
perceive that multiple strategies are common among them. In
this work, a new search pattern for ME is proposed seeking
to reduce the computational effort while maintaining visual
quality. In order to obtain optimum results, the similarity
measure has been enhanced to work with a pre-computed lat-
tice subsampling based on low discrepancy sequences. All the
proposed solutions presented in this work are compatible with
the techniques discussed in this section. Such solutions make
use of low discrepancy sequences, quasi-random sequences
generally used to reduced the number of sampled points to
compute approximate values of multiple integrals by meth-
ods like Monte-Carlo [16].

2. LOW DISCREPANCY SEQUENCES

Monte Carlo methods form a class of algorithms that use
pseudo-random numbers in tasks that usually involve numer-
ical processing of a large amount of data [16]. These methods
have been applied to a great variety of numerical problems
such as in the iterated integral estimate, and usually present
great advantages over the traditional approaches of partition
intervals such as Simpson’s and the like [17].

Among the pseudo-random sequences, the so called low
discrepancy sequences have been the object of major re-
search, given its apparent superiority with respect to space
uniform cover and the convergence performance in the inte-
gral estimates. We call discrepancy the measure of uniformity
of a given sequence1. More formally:

Definition 1 (Discrepancy) Let ω = {x1, x2, · · · , xn, xn+1,
· · · } an infinite sequence of real numbers in the interval [0, 1]
and let I ⊆ [0, 1] one sub-interval. We define A(I;n) the
amount of points of the subsequence x1, x2, · · · , xn belong-
ing to I , i.e, A(I;n) = |I ∩ {x1, x2, · · · , xn}|. In a uniform
sequence, the amount of points A(I;n) is proportional to I’s

1The definitions and notation that follow are the same as in [16].

measure, i.e, A([α,β);n)
n

= β −α considering that I = [α, β).
The measure of the deviation

Dn = Dn(ω) = sup
0≤α<β≤1

∣

∣

∣

∣

A([α, β);n)

n
− (β − α)

∣

∣

∣

∣

is called Discrepancy of the first n points of the sequence ω.

The computation of D can be quite complicate. An as-
sociate measure of a somewhat simpler computation is the so
called star-discrepancy expressed by:

D∗
n = D∗

n(ω) = sup
0<β≤1

∣

∣

∣

∣

A([0, β);n)

n
− β

∣

∣

∣

∣

.

A well established result relates both measures through
the inequality

D∗
n ≤ Dn ≤ 2D∗

n.

Considering sequences in the interval [0, 1], if the discrep-
ancy of the sequence is zero, then the cover of the sequence
is completely uniform and if it is near 1 then the sequence
will be poorly uniform, leaving empty chunks in the interval.
Some sequences may be regarded as a low discrepancy, i.e.,
near zero discrepancy, when considered as a whole, however
they may present high discrepancy behavior during their early
stages of construction. For instance, consider a total of 256
points for a given low discrepancy sequence, but it is possible
that, if we take an intermediate phase of its construction, en-
compassing 64 points for example, this sequence may present
a poorly uniform cover, which is a high discrepancy behavior.
Other sequences possess the property of behaving like a low
discrepancy sequence in all of its construction phases, such
as Van der Corput-Halton’s. In this paper, we will utilize Van
der Corput-Halton’s sequences [16], defined as follows:

Definition 2 (Van der Corput-Halton’s Sequence (VDH))
Let b > 1 a positive integer number. The sequence V DHb =
{x1, x2, · · · } for which the term xi is defined by

xi =

s
∑

j=0

aj

bj+1
,

where
∑s

j=0 ajb
j is the expansion in the numerical base b of

the number i− 1 is called Van der Corput-Halton’s Sequence
in the base b.

2.1. The VDH sequence and block-matching

Let X and Y blocks of size M × N in the current frame
and the search window in the previous frame, respectively.
Let P = {p1, p2, · · · , pk} be the subset of {1, 2, · · · ,M} ×
{1, 2, · · · , N}, i.e, a subset of all possible coordinates of
blocks X e Y . We define the mean absolute difference in-
duced by P as:

SADP (X,Y ) =

k
∑

l=1

|X(pl)− Y (pl)|. (2)
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Notice that if P = {1, 2, · · · ,M} × {1, 2, · · · , N} then
Equation (2) corresponds to Equation (1) for fixed positions
(m,n) and (i, j). Because summations and integration are
related operations, the use of Monte Carlo techniques for the
summations’ evaluation, just like it is done with integration, is
suggested in this work. In particular, the use of low discrep-
ancy sequences in the fast evaluation of the summations in-
volved in the computation of the SAD, as will be seen briefly,
presented very encouraging results.

In order to employ low discrepancy sequences making use
of the concept of induced SAD, we need to transform the se-
quence VDH b of real numbers in the interval [0, 1) into a
sequence P of integers lying in the set2 {1, 2, · · · ,m× n}.

One approach consists of taking P as the ordering of
{1, 2, · · · ,m × n} induced by the indexing of VDHb, i.e.,
pi = j if and only if xi is the j-th element in the or-
dered list of VDHb’s elements. For instance, the sequence
A = {0.8, 0.2, 0.7, 0.4} induces, through this mechanism,
the sequence B = {4, 1, 3, 2}, meaning that in the ordered
listing of A its original elements hold respectively the fourth,
first, third and second positions. Through this approach the
repetitions are avoided but the convergence is preserved.

Fig. 1 shows the first eight points in a 2D VDH sequence
in bases 2 and 3 for a 8×8 pixel block. From the image
processing point of view, this represents a pixel subsampling,
technique used to accelerate the computation of similarity
measures such as the SAD within ME. The SAD computation
takes into consideration only the painted dots, while the white
dots are ignored. Figure 1 presents a VDH-based subsam-
pling with an 8:1 ratio where only one eight of the pixels are
used by the similarity measure.

Fig. 1. 8:1 VDH subsampling.

In order to preserve the hierarchical structure used by the
H.264/AVC coding standard, we used a latticed pattern sub-
sampling as shown in Fig 2. Therefore, block partitions of
sizes 16×16, 16×8, 8×16 and 8×8 can be used to gener-
ate the motion vectors. Thus, the low discrepancy sequence
can be computed only once and used as a mapping for a sub-
sampling method to reduce computational effort related to the
similarity measure even in cases of multiple block types such
as the H.264/AVC and H.265/HEVC.

2in fact, the sequence P in the definition of induced metric is a subset
of {1, 2, · · · , m} × {1, 2, · · · , n}. By using the standard linearization of a
matrix, it is enough to consider P as a subset of {1, 2, · · · ,m× n}

Fig. 2. Hierarchical VDH subsampling lattice.

3. QUASI-RANDOM SEARCH (QRS)

As seen in Section 2.1, consider k points in a 2D VDH
sequence on bases 2 and 3, in other words the sequence
{Pl}l=1···k = {(al, bl)}l=1···k where a1, a2, · · · , ak is the
base 2 sequence and b1, b2, · · · , bk the base 3. The algorithm
entitled Quasi-Random Search (QRS) proposed in this work
uses a VDH sequence to select the candidate blocks within
the search window. In order to select such blocks, a nor-
malization of a1, a2, · · · , ak to the [1, 2dm + 1] interval and
b1, b2, · · · , bk to the [1, 2dm+1] is required. In this work, we
used a sixty-four point sequence beginning from the seventh
point in a spiral around the search window’s origin point as
seen as blue squares in Figure 3.

In order to efficiently generate the motion vectors in video
sequences containing slow movements, the QRS algorithm
uses a NTSS-inspired search in its first step [4] in a 5×5
squared area centered in the origin (squared block in the cen-
ter of Fig. 3). We then apply an early termination check as
UMHS’ algorithm. If this condition is satisfied, the algorithm
skips to the last step, where a local refinement is used com-
posed of a small hexagon search followed by a small diamond
pattern (see Figure 3). The position with a least SADP value
in the local refinement, will be used to generate the motion
vector. If the early termination criteria is not met, in the sec-
ond step, another sixty-four candidate blocks are evaluated in
a four-group-of-sixteen schema. For every group of sixteen
blocks that is evaluated, an early termination check is per-
formed and if met, the algorithm jumps to the last step and
the position with the smallest SADP is chosen to generate
the motion vector.

Fig. 4 shows the block diagram for the QRS algorithm.
Note that the initial prediction as well as the early termination
check is used to reduce the actual number of candidate blocks
checked.
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Fig. 3. QRS algorithm search pattern. In the 5×5 NTSS-
inspired search the initial squared pixels centered around the
black pixel is tested first. If the center pixel is not the op-
timum a second sub-step tests the immediate neighborhood
shown by the triangles for both edge and corner cases. The
local refinement slides the hexagonal shape and then a small
diamond shape until the best match is the center pixel.

Fig. 4. QRS algorithm block diagram.

4. RESULTS

The VDH-based subsampling was encoded in the H.264/AVC
Reference Software. This way, both the similarity measure
SADP and the SAD could be used. In order to evaluate the
performance of the motion estimation (ME) algorithms, we
included a counter that increments every time a pixel compar-
ison is made by the SAD. This allows the actual number of
operations to be computed, not the theoretical or maximum
one.

The codec was configured as such: 150 frames, one I-
type frame for every four P-type frames (IntraPeriod = 4),
RD optimization on, quantization parameter set to 28 (QP =
28) and four reference frames (NumberReferenceFrames=4).
The maximum search range is configured according to the in-
put sequence format, 32 for HD videos and 16 for CIF/QCIF.
The PSNR was measured by the reference software. To eval-
uate the proposed method, we calculated the bit rate variation
and the number of pixel comparisons made by the similarity
measure (SAD) as follows:

∆Rate =
Ratemethod −Ratereference

Ratereference
× 100% and (3)

∆OP =
OPmethod −OPreference

OPreference

× 100%, (4)

where Ratemethod and OPmethod are the bit rate variation
and the number of pixel comparisons of the proposed method
(QRS). Ratereference and OPreference indicate the bit rate
and number of pixel comparisons made by the UMHS method
implemented in the H.264/AVC Reference Software.

Table 1 shows the results regarding image quality (PSNR),
computational effort (OP) and coding bit-rate (Rate). Consid-
ering the PSNR, the QRS algorithm displays an insignificant
quality loss when compared to the original UMHS, in the
other hand, the computational effort has been greatly reduced
by 73,06% in average and low fluctuations in the bit-rate.

Table 1. Experimental Results in the H.264/AVC for the QRS
algorithm.

Sequence ∆PSNR (dB) ∆OP (%) ∆Rate (%)
Akiyo -0,008 -76,60 0,23

Container -0,003 -77,56 0,95
Coastguard -0,01 -79,65 0,33

Foreman -0,019 -74,97 1,28
Football -0,026 -85,13 2,59
Mobile 0,004 -66,66 2,92
Soccer -0,031 -82,97 4,38

Soccer (HD) -0,022 -40,90 -1,51

5. CONCLUSION

The investigation on UMHS algorithm optimization with em-
phasis on low computational costs resulted in the develop-
ment of a new ME algorithm, Quasi-Random Search (QRS).
This algorithm presents a search pattern based on VDH low
discrepancy sequences coupled with a pixel subsampling also
based on VDH sequences. In addition, this algorithm uses
early termination checks to accelerate the search procedure,
as well as an initial prediction to avoid local minima traps
and reduce the total number of iterations. In this way, quality
losses are kept to an insignificant level while greatly increas-
ing the algorithms performance.
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