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ABSTRACT
Both random and structured perturbations affect seismic data.
Their removal, to unveil meaningful geophysical information,
requires additional priors. Seismic multiples are one form of
structured perturbations related to wave-field bouncing. In
this paper, we model these undesired signals through a time-
varying filtering process accounting for inaccuracies in am-
plitude, time-shift and average frequency of available tem-
plates. We recast the problem of jointly estimating the filters
and the signal of interest (primary) in a new convex varia-
tional formulation, allowing the incorporation of knowledge
about the noise statistics. By making some physically plausi-
ble assumptions about the slow time variations of the filters,
and by adopting a potential promoting the sparsity of the pri-
mary in a wavelet frame, we design a primal-dual algorithm
which yields good performance in the provided simulation ex-
amples.

Index Terms— Optimization methods, Wavelet trans-
forms, Adaptive filters, Geophysical signal processing, Signal
restoration.

1. INTRODUCTION

Fig. 1. Principles of seismic wave propagation, with reflections on
different layers, and data acquisition. Solid blue: primary; dashed
red and green: multiple reflection disturbances.

Geophysical signal processing [1, 2] addresses the extrac-
tion of relevant information present in seismic data. In reflec-

tion seismology, seismic waves propagate through the subsur-
face medium. The portion of seismic wave fields recorded at
the surface forms the seismic traces whose reflections at ge-
ological interfaces and propagation-related distortions inform
about the subsurface structure (see Fig. 1). An idealization
would consist in inferring the relative distances and velocity
contrasts between layers through an impulsive seismic source
signal traveling first downwards, then upwards, toward the
seismic sensors. Many types of unpredicted disturbances af-
fect seismic signals. Consequently, geophysics has nurtured
several tools central to potent signal processing trends, includ-
ing robust, ℓ1-promoted deconvolution [3], or complex, con-
tinuous wavelet transforms [4]. One of the most severe types
of interferences, hence still requiring mitigation, are multi-
ple reflections, and correspond to seismic waves bouncing be-
twixt layers [5]. Such reverberations, from the point of view
of geological information interpretation, imitate and even be-
dim genuine target reflectors, since they possess similar wave-
form and frequency content. Model-based multiple removal
is one of the industry standard techniques. It consists of es-
timating a realistic template of the multiples, which is sub-
sequently adapted in amplitude, delay and frequency by time-
varying matched filtering techniques, for instance in a wavelet
or curvelet domain, see [6, 7] and references therein. When
highly complicated propagation paths occur (dashed lines in
Fig. 1), several multiple templates are devised and adaptively
weighted depending on the time and space location of seismic
traces. Inaccuracies in template modeling as well as the com-
plexity of the time-varying adaptation combined with addi-
tional unmodeled disturbances require additional constraints
to obtain geophysically sound solutions. We use prior knowl-
edge on seismic data distribution (sparsity in wavelet frames)
and assume that the time-varying filters, adapting each tem-
plate, possess a finite impulse response (FIR) that smoothly
varies in time. We assume that a seismic trace is composed as
follows:

z(n) = s(n) + y(n) + b(n) , (1)

where n ∈ {0, . . . , N − 1} denotes the time index and
z = (z(n))0≤n<N corresponds to the observed data (seismic
trace) combining: the primary y = (y(n))0≤n<N (signal
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of interest, unknown) depicted in solid blue (Fig. 1), the
multiples (s(n))0≤n<N (sum of undesired reflected signals)
depicted in dashed red and green (Fig. 1) and the noise
b = (b(n))0≤n<N which is assumed to be additive zero-mean
white Gaussian. The paper improves upon [8] by: taking
into account several multiple templates, incorporating addi-
tional random noise into the generic model, and introducing
the nuclear norm as a potential multiple selection objective
criterion. Section 2 formulates the generic variational form
of the problem. Section 3 recalls the primal-dual proximal
formalution, followed in Section 4 by precisions concerning
the chosen optimization criterion. The performance of the
proposed method is assessed in Section 5.

2. VARIATIONAL FORMULATION

2.1. Model description

We assume that J templates (r(n)j )0≤n<N,0≤j<J for the dis-

turbance signal are available, which are related to (s(n))0≤n<N

through an FIR, possibly non-causal, linear model

s(n) =

J−1∑

j=0

p′+Pj−1∑

p=p′

h
(n)

j (p)r
(n−p)
j (2)

where h
(n)

j is an unknown impulse response (Pj tap coeffi-
cients) corresponding to template j and time n and where
p′ ∈ {−Pj + 1, . . . , 0} (p′ = 0 corresponds to the causal
case). It must be emphasized that the dependence w.r.t. the
time index n of the impulse responses implies that the filter-
ing process is not time invariant, although it can be assumed
slowly varying in practice. Templates are generated with stan-
dard geophysical modeling based on primaries. The adaptive
FIR assumption is common practice. The observation that
adapted filters are ill-behaved, due to the band-pass nature of
seismic data is well known, although rarely documented, mo-
tivating the need for filter coefficient control.

Eq. (2) can be expressed more concisely as

s =
J−1∑

j=0

Rjhj (3)

by appropriately defining vectors s, (hj)0≤j<J and matrices
(Rj)0≤j<J . More precisely,

s =
[
s(0) · · · s(N−1)

]⊤
, (4)

hj =
[
h
(0)

j (p′) · · · h
(0)

j (p′ + Pj − 1) · · ·

· · · h
(N−1)

j (p′) · · · h
(N−1)

j (p′ + Pj − 1)
]⊤

. (5)

Each matrix Rj is defined as a block diagonal matrix of size

N ×NPj :

Rj =




R
(0)
j 0 . . . 0

0 R
(1)
j . . . 0

... 0
. . .

...
0 0 . . . R

(N−1)
j




(6)

where
[
(R

(0)
j )⊤(R

(1)
j )⊤ · · · (R

(N−1)
j )⊤

]⊤
=




r
(−p′)
j · · · r

(0)
j 0 · · · 0

r
(−p′+1)
j · · · r

(0)
j 0 · · · 0

...

r
(N−1)
j r

(N−2)
j · · · r

(N−Pj)

j

0 r
(N−1)
j · · · r

(N−Pj+1)

j

...

0 · · · 0 r
(N−1)
j · · · r

(N−Pj−p′)

j




.

For more conciseness, one can write s = Rh by defining
R = [R0 . . . RJ−1] ∈ R

N×Q where Q = NP with P =
∑J−1

j=0 Pj and h = [h
⊤

0 . . . h
⊤

J−1]
⊤ ∈ R

Q.

2.2. Problem formulation

We define the following objective function, for every y ∈ R
N

and h ∈ R
Q,

θ(y,h) = ψ(z− y−Rh)+ϕ(Fy) + ρ̃(Lh) +

M∑

m=1

ιCm(h),

(7)
where ψ : R

N → ]−∞,+∞], ϕ : R
K → ]−∞,+∞],

ρ̃ : G → ]−∞,+∞], G is a real Hilbert space that we will
specify later on, and, for every m ∈ {1, . . . ,M}, ιCm des-
ignates the indicator function1 of a closed convex set Cm (M
constraints are considered here). F ∈ R

K×N designates an
analysis frame operator [9] and L is a nonzero bounded lin-
ear operator from R

Q to G. For tractability, in the following,
functionsψ, ϕ and ρ̃ are assumed to be convex. Our approach
consists of solving the following optimization problem:

minimize
y∈RN ,h∈RQ

θ(y,h). (8)

The minimization of this criterion can be interpreted as an
estimation of (y,h) in the sense of the Maximum A Poste-
riori (MAP), where the first term represents a data fidelity
term accounting for the noise, ϕ represents a regularization
term taking into account the statistical properties of the frame
coefficients of the primary, and ρ̃ models prior, available in-
formation on h. To further account for smooth variations of

1The indicator function ιC of a set C is such that ιC(u) = 0 if u ∈ C,
+∞ otherwise.
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filters h along the time dimension, hard constraints on the fil-
ters can be added through the convex sets (Cm)1≤m≤M .

It can be observed that the data fidelity term defines a
function Ψ

△

= ψ(z − Ω1·) where Ω1 = [I R]. Concerning
the regularization terms, we will introduce a second function
namelyΦ

(
Ω2 ·

)
, whereΦ: RK×G → ]−∞,+∞] : (x, u) 7→

ϕ(x) + ρ̃(u) and Ω2 is the block diagonal linear operator[
y
h

]
7→ (Fy,Lh). With these notations, (7) can be reex-

pressed as

θ(y,h) = Ψ
( [y

h

] )
+Φ

(
Ω2

[
y
h

] )
+

M∑

m=1

ιCm(h). (9)

3. PRIMAL-DUAL PROXIMAL ALGORITHM

To perform the minimization in (8), we propose to employ
the Monotone+Lipschitz Forward-Backward-Forward (M+L
FBF) algorithm recently proposed in [10]. This algorithm be-
longs to the class of primal-dual algorithms and avoid some
matrix inversions necessary in many other approaches [11,
12]. It requires to compute the proximity operators of each of
the terms in (8) (note that when one term has a Lipschitz con-
tinuous gradient, the gradient can be computed instead of the
proximity operator). Some relevant information about prox-
imity operators are recalled next.

3.1. Proximity operators

Let H be a separable real Hilbert space with norm ‖ · ‖.
Γ0(H) denotes the class of proper lower semi-continuous
convex functions from H to ]−∞,+∞]. The proximity
operator [13] of φ ∈ Γ0(H) is defined as

proxφ : H → H : u 7→ argmin
v∈H

1

2
‖v − u‖2 + φ(v). (10)

If C is a nonempty closed convex set of H, then proxιC re-
duces to the projection ΠC onto C. Note that this operator
possesses numerous mathematical properties [14, 15].

3.2. M+LFBF algorithm

For many standard data fidelity terms, ψ ∈ Γ0(R
N ) is dif-

ferentiable with a µ-Lipschitz continuous gradient for some
µ ∈ ]0,+∞[. In this case,

∇Ψ = −Ω⊤
1 ∇ψ(z − Ω1·). (11)

In addition, it can be assumed that Φ is a possibly nonsmooth
function belonging to Γ0(R

K × G).
The iterative approach allowing us to solve (8) is de-

scribed in Algorithm 1 where L∗ denotes the adjoint operator
of L. The use of this algorithm requires to be able to compute

the norm of each linear operator involved in the criterion or
at least an upper bound of it. Here, we can derive:

‖Ω1‖ = ‖[I R]‖ ≤
√

1 + ‖R0‖2 + . . .+ ‖RJ−1‖2 (12)

where ‖Rj‖ = maxn∈{0,...,N−1} ‖R
(n)
j ‖ for every j ∈

{0, . . . , J − 1} and ‖Ω2‖ = max(‖F‖, ‖L‖). At each
iteration i, the stepsize γ[i] must be chosen so as to sat-
isfy the following rule: let β = µ +

√
‖Ω2‖2 +M and

ǫ ∈]0, 1
β+1 [, then γ[i] ∈ [ǫ, 1−ǫ

β
]. It must be emphasized that

the choice of the stepsize is crucial for the convergence speed
of the algorithm. If the norms of the matrices are too high,
then the algorithm will converge slowly since the stepsize
will be small. In this case, a preconditioned version of the
algorithm can be employed [16].

Algorithm 1 M+LFBF

Set γ[i] ∈ [ǫ, 1−ǫ
β

]. Set
[
y[0]

h
[0]

]
∈ R

N+Q, v
[0]
1 ∈ R

K , u
[0]
1 ∈

G, (u
[0]
2,m)1≤m≤M ∈ (RQ)M

for i = 0, 1, . . . do
Gradient computation

[

s
[i]
1

t
[i]
1

]

=

[

y
[i]

h
[i]

]

− γ[i]






∇Ψ

(

[

y
[i]

h
[i]

]

)

+







F⊤v
[i]
1

L
∗u

[i]
1 +

M
∑

m=1

u
[i]
2,m













Proximity operator computation
s
[i]
2 = v

[i]
1 + γ[i]Fy[i]

w
[i]
1 = s

[i]
2 − γ[i] prox(γ[i])−1ϕ((γ

[i])−1s
[i]
2 )

t
[i]
2,1 = u

[i]
1 + γ[i]Lh[i]

(t
[i]
2,2,m)1≤m≤M = (u

[i]
2,m + γ[i]h[i])1≤m≤M

w
[i]
2,1 = t

[i]
2,1 − γ[i] prox(γ[i])−1ρ̃((γ

[i])−1t
[i]
2,1)

(w
[i]
2,2,m)1≤m≤M = (t

[i]
2,2,m − γ[i]ΠCm

(
t
[i]
2,2,m

γ[i] ))1≤m≤M

Averaging
q
[i]
1,1 = w

[i]
1 + γ[i]Fs

[i]
1

v
[i+1]
1 = v

[i]
1 − s

[i]
2 + q

[i]
1,1

q
[i]
2,1 = w

[i]
2,1 + γ[i]Lt

[i]
1

(q
[i]
2,2,m)1≤m≤M = (w

[i]
2,2,m + γ[i]t

[i]
1 )1≤m≤M

u
[i+1]
1 = u

[i]
1 − t

[i]
2,1 + q

[i]
2,1

(u
[i+1]
2,m )1≤m≤M = (u

[i]
2,m − t

[i]
2,2,m + q

[i]
2,2,m)1≤m≤M

Update
[

y
[i+1]

h
[i+1]

]

=

[

y
[i]

h
[i]

]

−γ
[i]






∇Ψ

(

[

s
[i]
1

t
[i]
1

]

)

+







F⊤w
[i]
1

L
∗w

[i]
2,1+

M
∑

m=1

w
[i]
2,2,m













end for

4. A DEEPER LOOK AT THE CRITERION AND
PROXIMITY OPERATORS

The noise is usually assumed to be additive, zero-mean, white
and Gaussian. In this case, as ψ accounts for the noise statis-
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tics, it can be chosen equal to ψ =
1

2σ2
‖ . ‖2. Then, the

Lipschitz constant µ is equal to ‖Ω1‖
2/σ2.

Concerningϕ, a separable form can be adopted, where we
can set, for every k ∈ {1, . . . ,K}, ϕk = κk,1| · |+ κk,2| · |

pk

with pk ∈ ]1,+∞[ and (κk,1, κk,2) ∈ [0,+∞[2. Closed
form expressions of the considered power functions are in-
deed available for typical values of the exponent [14].

For simplicity, a similar parametric form can be adopted
for the regularization function ρ̃. However, a more general
framework can be followed by appropriately defining the lin-
ear operator L. For our purposes, the regularization applied
on h can be chosen separable with respect to multiplicity in-
dices j and thus, we get:

ρ̃(Lh) =
J−1∑

j=0

ρ̃j(Lj Diag(hj)) (13)

where, for every j ∈ {0, . . . , J − 1}, Lj ∈ R
N ′×NPj and

ρ̃j ∈ Γ0(R
N ′×NPj ). Of particular interest is the case when

ρ̃j is equal to the nuclear norm ‖ · ‖∗, up to a multiplicative
positive constant. If N ′ = NPj and Lj = I, we retrieve the
classical ℓ1 norm penalty on hj . However, following the work
in [17] on sparse regression, a better choice may be N ′ = N
and Lj = Rj . The proximity operator of the nuclear norm
can be computed easily by thresholding the singular values of
the matrix in its argument (see [18]).

Concerning the last term in (7), we propose to set M = 2
and to employ

C1 =
{
h ∈ R

Q | ∀(j, p), ∀n ∈

{
0, . . . ,

⌊
N

2

⌋
− 1

}
,

|h
(2n+1)
j (p)− h

(2n)
j (p)| ≤ εj,p

}
(14)

C2 =
{
h ∈ R

Q | ∀(j, p), ∀n ∈

{
1, . . . ,

⌊
N − 1

2

⌋}
,

|h
(2n)
j (p)− h

(2n−1)
j (p)| ≤ εj,p

}
. (15)

These constraints prevent strong variations of correspond-
ing coefficients of the impulse response, estimated at two con-
secutive time samples. The bounds εj,p ∈ [0,+∞[ may de-
pend on the shape of the expected filter. For example, its
dependence on the coefficient index p may enable a larger
(resp. smaller) difference for filter coefficients taking larger
(resp. smaller) values. Note that in each subset, the involved
variables are decoupled. The proximity operators of the as-
sociated indicator functions are given by the projections onto
these sets, which reduces to projections onto a set of hyper-
slabs of R2.

5. SIMULATIONS

To demonstrate the performance of the proposed approach,
we process seismic data represented in Fig. 2. We use a real-

istic seismic signal y and templates r1 and r2 (J = 2), and we
synthetically generated the observations according to model
(1). For these data, P1 = 10, P2 = 14 and σ = 0.08.

The criterion to be minimized is defined by (7) where ψ
and (ϕk)1≤k≤K have been chosen as explained in Section 4.
F is a wavelet frame and, for every k ∈ {1, . . . ,K}, pk ≡ 2
and subband-adaptive values of κk,1 and κk,2 are set. The
constraints C1 and C2 are chosen according to (14) and (15),
where ε1,p = 0.1 and ε2,p = 0.07 for every p.

A first restoration result is displayed in Fig. 2 when ρ̃
is the nuclear norm. It can be observed that the multiples s
are very well estimated. The primary y is faithfully retrieved
in the first half part where its amplitude takes significant val-
ues. It is only partly unveiled on parts where the multiple
energy is higher. Note that actual geophysical signal process-
ing proceeds in an iterative manner, allowing estimated multi-
ple subtraction from the noisy data, instead of direct primary
estimation as performed here, or refinements on newly, even
partly detected primary zones. We thus consider the method
of sufficient performance and potential at the present stage.

100 200 300 400 500 600 700 800 900 1000

 

 

 

 

 

 

ŝ

z

s

r2

r1

ŷ

y

Fig. 2. Considered seismic signals, from top to bottom: origi-
nal (unknown) signal y, estimated ŷ, first template r1, second
template r2, multiple (unknown) s, estimated ŝ, and observed
signal z (σ = 0.08).

Table 1 shows the signal-to-noise ratios (SNR, averaged
over 100 noise realisations) obtained in the estimation of y
and s. Simulations have been run for three a priori ρ̃ and for
4 noise levels (σ).

SNRy SNRs

σ \ ρ̃ ℓ1 ℓ2 ‖ · ‖∗ ℓ1 ℓ2 ‖ · ‖∗
0.01 20.90 21.23 23.57 24.36 24.68 26.74
0.02 20.89 21.16 23.51 22.53 23.02 23.76
0.04 19.00 19.90 20.67 20.15 20.14 19.84
0.08 17.55 16.81 17.34 16.96 16.56 15.96

Table 1. SNR for the estimations of y and s considering dif-
ferent a priori functions ρ̃ and 4 noise levels. Symlet wavelets
(undecimated) of length 8 over 4 resolution levels are used.
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