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ABSTRACT 

 

Complex signals such as images, audio and video recordings 

can be represented by a large over complete dictionary 

without distinguishable compromise on the representation 

quality.  Large over complete dictionaries with more 

patterns can be used to increase the sparse coding as well as 

provide significant improvements in signal representation 

quality.  The use of the over-complete dictionaries and 

sparse coding has been successfully applied in compression, 

de-noising, and pattern recognition applications within the 

last few decades.   One particular dictionary, the Discrete 

Cosine Transform (DCT) dictionary has seen a great deal of 

success in image processing applications.  However, we 

propose a novel non-linear over-complete dictionary that is 

sparser than the DCT dictionary while improving the quality 

of the signal representation.  The proposed non-linear 

dictionary has demonstrated through experimental results to 

be superior to the DCT dictionary by achieving higher 

signal to noise ratio (SNR) in the reconstructed images. 

 

Index Terms— Sparse coding, Non-linear dictionaries 

atoms, DCT dictionary, image reconstruction 

 

1. INTRODUCTION 

 

There has been a high level of interest in the recent decade 

in sparse coding. Sparse coding and over complete 

dictionaries can be applied individually or in conjunction in 

compression, feature extraction, pattern recognition, image 

reconstruction, image de-noising, and many more 

applications.  In most image processing applications, the 

first step is to map the image into a transformed space where 

the signal can be represented in a sparse matter.   One of the 

most frequently used transform for this application is the 

DCT due to its simplicity and robustness in signal 

representation.   Once the transformation dictionary is 

known then the sparse coding algorithms solves the signal 

representation problem, where a signal 
my R is 

represented using a small number of non-zero coefficients in 

the source vector 
nx R satisfying the linear model 

2
0Y DX   for exact representation and  

2
Y DX    

for an approximation of the signal.  In the above linear 

model, D is the known dictionary, 
mxnD R and X is the 

sparse vector set and  is the desired representation error.  

The sparse coding problem can be stated as an optimization 

problem shown in equation (1.1) using the L0 norm on the 

sparse vector [1].  The L0 norm counts the number of non-

zero coefficients in the vector ignoring its magnitude.  

 

 
0 2

min     such that   x x Y DX    (1.1) 

 

There has been a growing interest and research into the 

type of dictionaries that can be used for sparse coding.  

There are two categories of dictionaries, the pre-defined 

dictionary such as the DCT, Gabor function dictionaries or 

the adaptive dictionaries. The adaptive dictionaries are 

dictionaries that adapt to the training samples and are shown 

to have excellent performance [2] but they are neither 

simple to create nor as robust as the DCT for some 

applications.  The dictionary learning process is a time 

consuming process.  In image reconstruction, a predefined 

dictionary is preferred to a learned dictionary because a 

learned dictionary will change with training samples, and 

the quality of the learned dictionary depends on the training 

samples.  One of the biggest benefits of the predefined 

dictionary is it does not have to accompany the given sparse 

vector set to represent the data and thus it can be used to 

transfer images and data since the predefined dictionary can 

be recreated at the receiving side with minimal information.  

This is one of the reasons why the DCT dictionary has seen 

success in image reconstruction and compression 

application.  However the question this paper asks, is the 

DCT the best predefined dictionary that can be used? We 

propose a novel pre-defined set of non-linear atoms to create 

a dictionary that outperforms the DCT dictionary. 

 

The remainder of this paper is formatted as follows.  

Section 2 will contain a brief discussion on the available 

dictionaries such as the DCT dictionary, and adaptive 

dictionaries.   Section 3 will present the formulation of the 

non-linear dictionary.  Section 4 will be dedicated for 

experimental results and analysis. Finally, the paper will 

present its future work and conclusion in section 5 and 6 

respectively. 
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2. TYPES OF EXISTING DICTIONARIES 

 

The DCT dictionary is a predefined dictionary and is widely 

accepted because it can be easily implemented.  The atoms 

of a DCT dictionary di are shown in (1.2) where m is the 

size of the discrete signal to be represented, and L is a fixed 

constant that controls the fixed frequency spacing of the 

dictionary [3].  The atoms of the dictionary are the column 

vectors of the dictionary.  An over-complete dictionary is a 

dictionary where the number of column vectors is much 

more the number of row vectors.  Given a signal
my R , 

and a dictionary
mxnD R , the dictionary is said to be over-

complete if n >> m. An over-complete DCT dictionary is 

used to evaluate the proposed hybrid dictionary’s 

performance. 

 

 2
cos    where k = 1 , 2, 3 ... mid i k

L

 
  

 
 (1.2) 

  

 The adaptive dictionaries are relatively new to the field.  

The learned dictionaries have shown promising results in 

experimental testing but the cost of implementation has been 

high.  Most of the development in this field has been to 

employ parametric models in the training process to create a 

structured dictionary.  Some of the techniques used to derive 

dictionaries are the lasso problem method, method of 

optimal directions (MOD) the generalized PCA [4], the 

Focuss-CNDL method [5], and the K-means, K-SVD [2].  

Each algorithm has its benefits as it is a compromise 

between speed and the quality of the dictionary.  These 

methods use different algorithms to solve either the problem 

stated in (1.3) or(1.4).  The difference between the two 

optimization equations is the constraint on the sparseness.  

In equation (1.3) the L0 norm is taken on the vector, so all 

non-zero coefficients have equal weight since L0 norm 

counts the number of non-zero components, it imposes the 

sparse condition.  In equation(1.4), the sparse restriction is 

relaxed, the L1 norm adds the weight of each coefficient, 

and therefore it can lead to a solution with many small non-

zero components.  The MOD, K-means and K-SVD all use 

equation(1.3).  The MOD algorithm uses the Moore –

Penrose pseudo-inverse to solve the problemY DX , 

even though it converges in a few iteration counts, the 

matrix inverse operation is very costly.  The K-SVD again 

solves the optimization problem in (1.3) but instead of 

updating the entire dictionary, it updates a single atom at a 

time making the K-SVD a faster method then the MOD.   

 
2

, 0
min    subject to   x D iY DX x S i    (1.3) 

 

 
2

, 1
min    subject to   x D iY DX x S i    (1.4) 

 

 However for all methods, the quality of the learned 

dictionary depends heavily on the training data samples 

used; if the training samples are closely correlated then the 

resulting learned dictionary is not robust.  If limited training 

data is used, the learned dictionary does not contain enough 

diverse atoms and will produce poor results when 

reconstructing other images.  The time to run the learning 

algorithm grows with the number of training samples, so 

having a large training set is infeasible.  The new 

developments in dictionary learning are attempting to 

combat these issues, making progress in online dictionary 

learning, unsupervised learning and so on to allow for large 

training data.  However the idea of a simple predefined 

robust dictionary is an attractive option this paper is 

exploring.     

 
3. NON LINEAR DICTIONARY ATOMS 

 

The DCT dictionary is a simple, robust dictionary; however 

it is composed of only harmonic signals. Even though it is 

possible to reconstruct any signal with appreciable quality 

using the well-established DCT technique, it does not 

provide a sparse representation for all signals.  Also recent 

work on dictionary learning has shown that the DCT 

dictionary is lacking some vital atoms.  Intuitively the DCT 

atoms should be able to sparsely represent smooth harmonic 

signals but will have difficulty representing transients, 

asymptotic behavior, discontinuities and non harmonic 

signals such as rational, logarithmic and exponentials.  

Consider the task of representing a non-harmonic signal y = 

ax+b.  The DCT dictionary is unable to represent this signal 

sparsely but by including polynomial atoms such as x, the 

new hybrid dictionary can represent the signal sparsely.  

Since the nature of the signal to be coded is unknown we 

propose to include a variety of functions some rational and 

logarithmic functions to handle asymptotic behavior, along 

with polynomial and exponential functions to provide 

support for smooth functions. The addition of new atoms 

obviously increases the size of the dictionary and the 

complexity of representing the dictionary.  This paper sets 

out simple schemes to produce a structured hybrid 

dictionary with the above mentioned additional nonlinear 

atoms while maintaining the benefit of a predefined 

dictionary that is being able to recreate the dictionary 

without requiring each value of the dictionary.  The 

proposed hybrid dictionary has an advantage over the 

adaptive dictionary because it does not require a training set.  

We expect the atoms with asymptotic behavior to be useful 

in representing natural signals with transients such as an 

image of a night sky with stars or percussion sounds in 

audio signals, while the addition of polynomials and 

exponentials will aid in representing smooth non-harmonic 

signals. However, the exponential and polynomial functions 

rapidly increase and become uncontained which make these 

ineffective, however if the region of the function, the start 

and end points, are selected carefully then it is shown to be 

effective.  
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The simplest dictionary extension is created by taking 

the cosine function to a higher order power, and making 

non-linear combinations.  Given a small DCT dictionary 

DCT1 with atoms shown in equation (1.2) we perform atom 

multiplication and take the DCT to a higher order.  We 

extend the given DCT dictionary by applying equation (1.5) 

to each of the atoms.  We are effectively creating a third 

atom, cos(x)cos(y) = cos(x - y) - sin(x)sin(y).  This can be 

viewed as a frequency modulator. The noteworthy part of 

this modification is that it can be fully described using the 

initial frequency, the fixed frequency spacing, the number of 

atoms in the dictionary and the number of times the 

dictionary extension was applied.  This dictionary contains 

all the benefits of the DCT with only single additional 

information that is required by the receiving side to recreate 

the entire dictionary.  The algorithm to extend the DCT 

dictionary is shown in Algorithm 1. 

 

 
2 2

cos  cos j   i i jdext d d i k k
L L

    
     

   
 (1.5) 

 

Given Dictionary 1 mxnDCT R  

DCT_EXT = DCT1 

for i = 1, i < n, i++ 

   for j = i, j < n, j++ 

       for k = 1, k < m, k++ 

            ,1 [ , ] [ , ]Atom i DCT k i DCT k j   

       end 

      DCT_EXT = [DCT_EXT   Atom] 

   end 

end 

Algorithm 1 DCT dictionary extension 

 

 The discrete polynomial atoms are created using the 

formula in (1.6) where m, is dictated by the number of rows 

in the dictionary, the size of the signal.  In the equation (1.6) 

k is a set of integers going from 1, 2, 3 ... m.  There are also 

a predefined set of coefficients {a, b, c}.  For our 

experimental testing we generated the coefficients using a 

fixed spacing scheme such that 1ia a i  , where i 

determines the number of atoms from each order of the 

polynomial.   The rational function set is created simply by 

selecting (c < 0) coefficients in equation(1.6). During our 

testing, the same set of coefficients for both (a and b) were 

used to generate both the polynomial and rational function 

set.  We also limited the polynomial order, variable c, in 

equation (1.6), to be between (-3 and 3) with fixed spacing.  

This main purpose of using a fixed spacing scheme and the 

same constants for the polynomial and rational functions set 

is to reduce the complexity and the data required to recreate 

the dictionary.  

 

 ( [ ] ) ic

i i ip a x k b   (1.6) 

  The log function set was created by passing the 

polynomial set into the log transform.  The exponential set 

was created by passing all the root functions to the 

exponential transform and the algorithm is shown in 

Algorithm 2.  A similar algorithm is used to create the log 

dictionary using only the polynomial dictionary set. Once 

the dictionary is compiled, the generated atoms were 

scanned for discontinuities and invalid numbers and 

corrected by choosing the previous valid value or next valid 

value in the atom.  

Given Dictionary 1 mxnD R  

EXP_EXT = D1 

for i = 1, i< n, i++ 

       for k = 1, k < m , k++ 

             [ , ],1 D k iAtom k e  

       end 

      EXP_EXT = [EXP_EXT Atom] 

End 

Algorithm 2 Exponential dictionary atom expansion 

  

 Once the atoms are corrected and all numbers are 

valid, the dictionary columns are normalized, and duplicate 

atoms are removed.  This step is necessary for speeding up 

the sparse coding process.  The final dictionary composition 

is summarized in Table 1 Nonlinear atoms of the hybrid 

dictionary which is a combination of the root atoms such as 

the DCT dictionary, higher order DCT extension, a set of 

polynomial functions, rational functions and logarithmic 

functions, and exponential functions set composed of the 

root atoms, which gives this dictionary composition a great 

variety of atoms that can represent signals efficiently.  

Table 1 Nonlinear atoms of the hybrid dictionary 

2
cos  i k

L

 
 
 

 

2 2
cos  cos j i k k

L L

    
   
   

 

 [ ]  ic

i ia x k b  

  log [ ]    for c 0ic

i i ia x k b   

2
cos  i k

Le

 
 
 

 2 2
cos  cos j i k k

L Le

    
   
   

 
 [ ]  

ci
i ia x k b

e

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4. EXPERIMENTAL RESULT 

 

The proposed dictionary was tested by reconstructing a test 

image of Lena using orthogonal matching pursuit (OMP) 

sparse coding technique.  The OMP method was selected 

due to its speed when dealing with large dictionaries.  The 

reader is referred to the literature on OMP and other greedy 

techniques for solving the sparse coding problem [6] [7] [8].  

The 512x512 pixel Lena grey-tone image was broken down 

into 8x8 patches and sparse coding was applied on these 

patches.  The original image and the reconstructed images 

with 7 non-zero constants are shown in Figure 1.  The 

reconstructed image using the hybrid dictionary is sharper 

then the image reconstructed with the DCT dictionary.  In 

Figure 2 the peak signal to noise ratio (PSNR) of the 

reconstructed image is shown.  The PSNR is calculated 

using equation(1.8).  The graph in Figure 2 shows that the 

non-linear dictionary performs better than the DCT 

dictionary. The difference in representation quality also 

increases quicker as the number of non-zero elements in the 

sparse vector is increased. The hybrid dictionary with 20 

coefficients has an SNR of 43 dB while the DCT is at 36 dB 

which is a difference of 7 dB. 

 

 
1 1

2

0 0

1
( , ) _ ( , )

m n

i j

MSE Y i j Y recon i j
mn

 

 

   (1.7) 

  

 10 1020log 10log ( )PSNR MAX MSE   (1.8) 

 

 
 

  

Figure 1 the original image of Lena is shown on top, the 

reconstructions using DCT and hybrid dictionary is shown on 

left right respectively. 

 
Figure 2 PSNR of Reconstructed Lena image 

 

5. FUTURE WORK 
 

The current results are as we expected, the addition of the 

non-linear, non-harmonic functions has improved the 

representation quality. Being inspired by the results, future 

work can focus on developing a parameter screening method 

to use the signals and select only the vital functions thus 

reducing the size of the hybrid dictionary.  We expect the 

parameter screened hybrid dictionary to produce a 

predefined dictionary with some adaptive properties that 

will help improve signal reconstruction quality. Also, since 

these nonlinear atoms are not orthogonal, the OMP sparse 

coding algorithm may not be the best suited for selecting the 

proper atoms to represent the signals.  The OMP algorithm 

was selected primarily for its speed, simplicity of 

implementation, and it performs well on a DCT dictionary, 

but future work should explore alternatives to see if there 

are any improvements to be gained.  

 

5. CONCLUSION 
 

The paper proposed a novel idea to create a predefined 

DCT-hybrid dictionary by extending the existing DCT 

dictionary.  Instead of only including the DCT atoms, the 

paper suggested the idea of using other non-linear functions 

such as polynomials, rational, logarithmic, exponential, and 

phase shifted higher order cosine functions creating a 

diverse set of dictionary atoms that are able to reconstruct 

not only smooth but also transient signals.  The performance 

of the hybrid dictionary was compared to an over complete 

DCT dictionary. The hybrid dictionary has performed as 

well or better than the DCT dictionary in image 

reconstruction; it was able to provide a reconstructed image 

with a higher SNR and a sparser representation.  Further 

testing and a parameter screening method to reduce the size 

of the dictionary will make the hybrid dictionary efficient 

and practical. 
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