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ABSTRACT

The retargeting pyramid (RP) method is a good alternative to the
well-known Laplacian pyramid (LP) approach for multiscale image
decomposition. RP can be obtained by replacing the low-pass fil-
tering and downsampling processes in LP with content-aware im-
age resizing (a.k.a. retargeting), which is a technique being devel-
oped in computer vision research. In this paper, we improve RP so
that it obtains good scalable image representation. The improved
RP is then integrated with a well-known multiscale-multidirection
(MSMD) transform, contourlet transform, to construct a saliency-
oriented MSMD image representation. In the experiment, our de-
composition outperforms the conventional pyramid structures.

Index Terms— Retargeting, content-aware image resizing, in-
terpolation, retargeting pyramid, Laplacian pyramid.

1. INTRODUCTION

Multiscale (MS) decomposition of images, e.g., by using discrete
wavelet transforms (DWTs) [1, 2], is a strong tool for analyzing im-
age signals. It is used in various image processing applications, such
as compression, denoising, enhancement, and texture retrieval. The
Laplacian pyramid (LP) method [3] is a widely-used MS decom-
position approach. LP is generally constructed by using separable
low-pass filtering along both horizontal and vertical directions fol-
lowed by the explicit downsampling by M ≥ 2. Strictly speaking,
the downsampling matrix of LP is represented as

QM = diag(M,M).

Since LP can be considered as a 2-D oversampled filter bank, similar
but effective approaches have been proposed [4, 5]. These pyramid
decompositions have classified the image signal based on spatial fre-
quency. However, we would like to consider the importance of con-
tent in an image for some image processing applications. Traditional
MS image decomposition cannot directly reflect this requirements.

Content-based image analysis, that has focused on extracting
prominent regions and objects from backgrounds by using prior in-
formation about the human visual system (HVS), has been widely
studied in researches related to computer graphics and vision. Re-
cently, content-aware image resizing, a.k.a. image retargeting1, has
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1After this, we will refer to content-aware image resizing as image retar-
geting, or sometimes, retargeting.

investigated as a direct application of content-based image analy-
sis [6–9]. These techniques are regarded as sophisticated image re-
sizing methods. Image retargeting often yields better results than
traditional scaling and cropping when resizing images into a differ-
ent aspect ratio and/or one with complex structures.

The authors recently proposed a new technique of MS image
decomposition called the retargeting pyramid (RP) [10]. Its down-
sampling process is quite different from LP. The LP’s explicit ap-
proach of filtering and downsampling is replaced by the implicit one
utilizing image retargeting. Furthermore, RP is combined with a
directional filter bank (DFB) [11, 12] to construct a content-aware
multiscale-multidirection (MSMD) decomposition. The MSMD de-
composition was therefore similar to contourlet transforms (CTs)
[5, 13]. It presents better performance than the conventional CTs
for image denoising.

In this paper, RP is improved by modifying the cost functions
to optimize a mesh. With this modification, we can obtain good re-
targeted images in the MS pyramid as well as good performance in
image processing applications. Furthermore, as a possible applica-
tion, we use the improved RP-based CT to an iterative image in-
terpolation. The proposed CT outperforms conventional CTs in our
experiments.

Relationship with Prior Works: Won and Shirani [14] proposed
a method whose concept is the same as our RP. The method is based
on a mesh-based retargeting and yields an MS pyramid. However, its
deformation is separable, i.e., all deformed meshes still retain their
rectangular shapes. Additionally, the region-of-interest (ROI) should
be manually selected and its significance map only has binary val-
ues. In contrast, RP is based on nonseparable mesh deformation: a
deformed mesh is allowed to have a (convex or concave) quadrilat-
eral shape. Additionally, each pixel has a saliency value within [0, 1]
depending on the significance map calculated automatically.

2. IMAGE RETARGETING

We have focused on mesh-based image retargeting in this paper. It
warps image pixels based on an optimized mesh. Here, mesh-based
deformation of an image is formalized. Let I(p) be the pixel value
of the original image, I , at the position,

p ∈ R2 | (0, 0) ≤ p ≤ (Ho − 1,Wo − 1),

whereHo andWo are the height and the width of the original image.
Moreover, let R(q) be the pixel value of the deformed image at

q ∈ R2 | (0, 0) ≤ q ≤ (Hr − 1,Wr − 1),
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where Hr and Wr are the height and the width of the retargeted im-
age. The original pixel position after mesh deformation is therefore
represented as

p′i = pi − di,

where i is the pixel index and di is the displacement vector of the
mesh. Let Î(p′) be the original pixel value in the deformed image.
Since we need the pixel value of R(q), it is interpolated from the
available pixels, Î(p′). Let us define a set of the neighboring posi-
tions, {p′j}, around q as

Np(q) = {p′j0 ,p
′
j1 , . . . ,p

′
jL−1
}.

This means L original pixel values are used for interpolation. Ad-
ditionally, let w(p′j , q) be the weight used for interpolation. This is
usually defined as the (Euclidean) distance between p′j and q. Fi-
nally, R(q) can be represented as:

R(q) =
1

κ

∑
p′j∈Np(q)

w(p′j , q) Î(p
′
j), (1)

where κ =
∑
j w(p

′
j , q) is a normalization term. It is worth noting

that this formalization occurs irrespective of the mesh shape, i.e., a
triangular or quadilateral mesh, with the appropriate selections of
Np(q) and w(p′j , q).

3. RETARGETING PYRAMID

3.1. Structure of RP

This section introduces RP as an alternative to LP. Let x(0) be the
vectorized version of I . The k-th level (k is a nonnegative integer)
outputs x(k) and x̂(k) are represented as [10]

x(k+1) = Rx(k) (2)

x̂(k) = x(k) −R∗x(k+1), (3)

where R is the retargeting operation. The details of the algo-
rithm are presented in the next section. Simply note that the filter-
ing+downsampling operation in LP is replaced by a retargeting R.
We define R, which can be decomposed into

R = Λ Φ, (4)

where Φ is the matrix form of (1) under conditions Ho = Hr and
Wo = Wr , and Λ is uniform scaling to an arbitrarily required size.
That is, the image is first deformed by a mesh to be the same size
as that of the original, and it is further uniformly scaled. R∗ is re-
ferred to in (3) as inverse signal mapping corresponding to R, i.e.,
the deformed and downsampled image is first upsampled to the orig-
inal resolution, and then interpolated from R(q) to Î(p′) followed
by rearranging pixels to p. The flow for RP is outlined in Fig. 1.

Note that usually R∗R 6= I, where I is the identity matrix. It
is clear that any size of the retargeted image can be permitted de-
pending on Λ. Moreover, if di = (0, 0) for all i and we choose Λ
to be the filtering+downsampling operation in LP, the MS decom-
position represented in (2)–(4) is the same as LP. As a result, RP
gives more flexibility to the redundancy ratio and filter selection for
pyramid-based MS image decomposition.

Fig. 1. Retargeting pyramid.

3.2. Redundancy of RP

The input image in the retargeting process is first deformed by the
optimized mesh into the same size as the original, and then the de-
formed image is uniformly scaled. Therefore, the redundancy ratio
can be easily controlled by using the scaling ratio of Λ. More for-
mally, redundancy ratio ρ is represented as

ρ = 1 +

K∑
k=1

(rk ·#x(k)),

where K is the decomposition level, rk is the scaling factor of Λ at
the k-th level, and #x(k) is the number of pixels in x(k). If rk =
1/2 ∀k and k → ∞, ρ ∼ 1.33, which is the same redundancy
ratio as that of LP. Moreover, if rk = 1 for k = 1 and rk = 1/2
otherwise, ρ ∼ 2.33, which is equivalent to the redundancy ratio of
a CT implementation by Lu and Do [5].

3.3. Contourlet Transform with RP

RP can be used to replace a pyramid in CTs for obtaining a MSMD
decomposition. The MSMD decomposition using RP is represented
as

x(k+1) =

{
Rx(k) k = 0

L̃x(k) k > 0

x̂(k) =

{
x(k) −R∗Rx(k) k = 0

H̃x(k) k > 0

ŷ(k) = D(k)
n x̂(k) ∀k,

where L̃ and H̃ form a perfect reconstruction 2-D filter bank pair,
which is the same as [5]. Note that for k > 0, the input is a retargeted
(deformed) image whereas x̂(0) is the residual image, which remains
the structure of the original image. After this, we will refer to the
transform as CT-RP.

4. IMPROVED RETARGETING IN RP

Our implementation of image retargeting is a customized version of
that by Wang et al. [7]. Their algorithm is summarized below.

1. Calculate a significance map.
2. Construct a weighted Laplacian matrix using cost functions.
3. Optimize the coordinates of the mesh by solving a sparse lin-

ear system.
4. Deform the image by using the optimized mesh.
5. Uniformly resize the deformed image into the target size.

The rest of this section describes a few key techniques for image
retargeting.
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First level

Second level

Fig. 2. The contourlet transform with retargeting pyramid.

4.1. Significance Map

While any significance maps can be permitted, the one used in this
paper is defined similarly to that by Wang et al. [7] as

W =
1

max(Wα)
Wα +Wβ , (5)

whereWα = (( ∂
∂x
I)2+( ∂

∂y
I)2)1/2 is the L2-norm of the gradient,

and Wβ is a saliency map calculated with the method used by Itti et
al. [15].

4.2. Cost Functions for Mesh Optimization

In our previous implementation of RP [10], only the mesh stretch-
ing term (introduced in Section 4.2.1) was used as the cost func-
tion. Unfortunately, the single stretching term tends to excessively
stretch significant regions, resulting in insufficient retargeting qual-
ity in higher pyramid levels. Therefore, we introduce two extra cost
functions to control both the retargeting quality and the performance
of image processing.

4.2.1. Mesh Stretching

This constraint is used to pursue stretching in the salient regions and
is defined as

Um =
∑
{i,j}∈E

wfij ||p
′
i − p′j ||2. (6)

The weight is given as

wfij = exp
(
−wf1 + wf2

α

)
,

where f1 and f2 are faces that share edges i and j, and α is a control
parameter for stretching the mesh. Clearly, wfij is small when the
significance values of f1 and f2 are large. Hence, this constraint
allows us to stretch the salient regions.

4.2.2. Quad Deformation

This is one of the cost functions introduced by Wang et al. [7] to
keep the shape of the mesh faces rectangular. Let us consider a quad
face, f , and a set of its adjacent edges, E(f). The distortion energy
due to pixel displacements at each face is defined as

Uu(f) =
∑

{i,j}∈E(f)

||(p′i − p′j)− sf (pi − pj)||2,

where sf is a scale factor of f between p and p′. The total energy
for all faces F is defined as the weighted sum of Uu(f) as

Uu =
∑
f∈F

wf Uu(f), (7)

wherewf is the average pixel significance of quad f calculated from
W in (5).

4.2.3. Edge Bending

This is also one of the cost functions introduced by Wang et al. [7]
and is a constraint to prevent edges from being bent between vertices
(pixels). Energy Ul is defined as

Ul =
∑
{i,j}∈E

||(p′i − p′j)− lij(pi − pj)||2, (8)

where lij = ||p′i − p′j || / ||pi − pj || is the length ratio of the edges.
This cost function is aimed at keeping the difference in edge lengths
between the original and deformed images as small as possible.

4.3. Total Cost Function

The three cost functions in (6), (7) and (8) are differentiated and
combined to obtain the total cost function. For Um, by differentiat-
ing (6) with respect to p′i and equating it to zero, the cost function in
matrix form is

∂Um
∂p′i

= 0→ Ξm,0 p
′
i −Ξm,1 pi = 0. (9)

where Ξm,0 and Ξm,1 form so-called Laplacian matrices.
The remaining cost functions are also calculated similarly toUm

as
∂Uu
∂p′i

= 0→ Ξq,0 p
′
i −Ξq,1 pi = 0, (10)

and
∂Ul
∂p′i

= 0→ Ξl,0 p
′
i −Ξl,1 pi = 0 (11)

Finally, we introduce the total cost function to be optimized. The
first function in (9) produces a “soft” mesh, whereas those in (10)
and (11) yield a “firm” one. Therefore, we combine these functions
using a control parameter γ. As a result, the total function is repre-
sented as

{γ (Ξq,0 + Ξl,0) + Ξm,0}p′i = {γ (Ξq,1 + Ξl,1) + Ξm,1}pi.
(12)

Since this is a sparse linear system, we can obtain the optimal p′i by
solving this equation. Clearly the cost function will become equal to
the previous one if γ = 0. Thus the implementation in this paper is
a generalized version of [10].

5. EXPERIMENTAL RESULTS

This section shows some experimental results of our proposed MS
decomposition. We used three test images: Lena, Monarch and Pep-
per (512× 512, 8-bit grayscale). In the experiment, the 9/7 DWT is
used for LP.
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Fig. 3. Optimized meshes (top row) and deformed images (bottom
row) for various γ. From left to right: γ = 0, 0.4, and 0.8.

Fig. 4. Enlarged portions of Monarch image reconstructed from
128× 128. Left: LP. Right: RP.

5.1. Image Retargeting

The effectiveness of the newly included cost functions is described.
Since one can control the strength of mesh stretching by using pa-
rameter γ in (12), we explain how optimized meshes are affected by
γ. Fig. 3 shows deformed Lena images and optimized meshes for
various γ. γ = 0 corresponds to our previous implementation of
RP [10]. As expected, the large γ constructs a “firm” mesh, whereas
the small γ yields a “soft” one. One can see that a relatively large γ
is recommended for pure image resizing. In contrast, a small γ was
better in our preliminary experiments for other image processing ap-
plications, since image processing results with the very firm mesh,
e.g., γ ≥ 1.0, were most similar to those with uniform scaling.

5.2. Scalable Representation

We measured the performance of RP by reconstructing low-resolution
images. That is, all coefficients lower than the k0-th level were ze-
roed out, i.e., only low-frequency or low-significance components
were kept, and an inverse transformation was performed. Perfor-
mance for k0 = 2 (reconstruction from 128 × 128) is compared in
this paper. The mesh softness parameter γ is set to 0.8. The results
for RP with γ = 0 and bicubic resizing (BC) are also presented
for purposes of comparison. For the scalable representation by BC,
it first downscales the image by four and the downscaled image is
interpolated back to the original resolution. We used the imresize
function in MATLAB.

Table 1 summarizes the performance of scalable representation.
Clearly, RP with γ = 0.8 has the best performance of the four. Fig.
4 presents the comparison between the reconstructed images by LP
and RP. The reconstructed image with RP clearly has fewer artifacts
than that with LP, which is similar to objective performance.

The MS images are compared with BC in Fig. 5. It is clear that

Original

Bicubic RP w/ 

Fig. 5. Comparison of Scalable Representation.

Table 1. Performance of Scalable Representation: PSNR (dB)
Image LP BC RP w/ γ = 0 RP w/ γ = 0.8

Monarch 25.57 25.01 26.05 26.73
Pepper 28.43 27.93 29.00 29.41
Lena 29.13 28.85 29.76 30.54

Table 2. Performance of Image Interpolation: PSNR (dB)
Image CT-MD DWT NEDI BC CT-RP

Monarch 32.04 31.74 30.34 30.28 32.10
Pepper 32.19 32.81 29.32 31.76 32.95
Lena 35.72 35.56 33.71 34.13 35.76

RP stretches the prominent regions in the image and the texture is
still visible in the quarter-sized image.

5.3. Contourlet-Based Interpolation

We present a possible application of CT-RP, where it can be applied
to CT-based iterative interpolation [16]. First, we downsampled an
image by two. Then, an obtained image of the size 256 × 256 was
interpolated back to the original size. We compared our CT-RP with
CT whose redundancy was around 2.33 (denoted as CT-MD here-
after) [5], DWT, NEDI [17], and BC. There were [32, 16, 16, 8, 8]
directional subbands for CT-MD2 and [8, 16, 8, 4, 4] for CT-RP from
fine to coarse scale. In the interpolation, γ = 0.2 since a softer mesh
is recommended for image processing applications. It is worth not-
ing that the redundancy ratio of CT-RP was around 1.33, which is
obviously lower than that of CT-MD.

Table 2 summarizes the performance of interpolation, where CT-
RP has performed the best. CT-RP, especially, has higher PSNRs
despite its lower redundancy ratio than that of CT-MD. CT-MD is
better than DWT for Monarch and Lena, but its performance is infe-
rior to DWT for Pepper.

6. CONCLUSIONS

In this paper, we proposed the improved structure of RP. The new
cost function of RP is able to obtain good scalable representation by
controlling mesh stretch strength. Furthermore, it is applied to the
iterative image interpolation using the CT by replacing LP in the CT
framework with RP. In the experimental results, our new content-
aware MSMD decomposition performs well compared with the con-
ventional pyramid structure.

2This setting is the same as Mueller et al.’s MATLAB code.
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