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ABSTRACT
Third generation LIDAR full-waveform (FW) based systems
collect 1D temporal profiles of laser pulses reflected by the
intercepted objects to construct depth profiles along each
pulse path. By emitting a series of pulses towards a scene
using a predefined scanning pattern, a 3D image contain-
ing spatial-depth information can be constructed. Achieving
super-resolution to resolve finer spatial details is of great in-
terest because the spatial resolution of a LIDAR system is
typically limited by the size of the spot on the target. In this
study, we consider the problem of resolving range maps to
resolutions smaller than the size of the spot using overlap-
ping spots. This overlap provides the additional information
needed to locate multiple objects within a spot using sparse
source separation, thus achieving super-resolution.

Index Terms— Full-waveform LIDAR, Super-resolution,
finite rate of innovation, sparsity, source separation.

1. INTRODUCTION

LIDAR acquisition consists of emitting a laser pulse in a
particular direction (corresponding ultimately to a point on a
grid) and measuring the full-waveform (FW) reflected signal.
This process is repeated in a predefined pattern by emitting
pulses towards distinct locations which are mapped onto this
‘grid’ using a 2D mechanical scanning unit. Measuring FW
reflections instead of single time-of-flight (TOF) provides
additional information for improved range estimation and
scene structure characterization (e.g, inclination, smooth-
ness, vegetation, building roof) [1]. By further processing
these contiguous FW profiles of the 3D scene, 3D images
containing spatial and depth information can be constructed.

The LIDAR systems we are dealing with in this study are
composed of a single pulsed laser source, a mechanical scan-
ning unit (e.g., a rotating mirror), a single photodetector or
avalanche photodiode, a high rate A/D converter, a storage
media and a positioning system unit (e.g., GPS). Current LI-
DAR systems are equipped with A/D converters with sam-
pling rates in the range of the GHz. With these rates, individ-
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ual measured FW signals can achieve high depth/range reso-
lution. Unfortunately, this is not the case for the spatial res-
olution. In general, this is constrained by the laser spot size
and the precision of the mechanical scanning unit [2], [3].

In this paper, we study the problem of achieving spatial
super-resolution (SR) LIDAR based on multiple lower resolu-
tion observations. This problem has been widely explored in
2D image acquisition systems [4], but to our knowledge very
little work has been done with LIDAR. The most intuitive ap-
proach to achieve higher spatial resolution is to reduce the
size of spot on the target (e.g., ‘spot’ ≤ 1 m in diameter) and
increase the spatial sampling density to hundreds of millions
of pulse emissions [3]. Unfortunately, collecting highly dense
pulse emissions is very expensive when limited resources are
available (e.g., limited storage in a remote sensor location).
More importantly, the size of the spot on the target is largely
controlled by the laser divergence and the distance to the re-
flecting objects.

Our acquisition approach to achieve SR consists, instead,
of allowing for larger spot sizes ( e.g., ≥ 5 m in diameter)
while still using a raster scan pattern. The key difference,
however, is that we scan the scene here so that the spots cor-
responding to successive laser pulses are overlapping. With-
out this overlap, sub-spot localization of multiple reflectors
is infeasible because there is simply not enough information
localize the individual reflectors. We say here that effective
sub-spot localization is achievable when successful estima-
tion of the mutual FW components is highly probable.

In essence, our problem is essentially a source separation
problem [5]. The similarity comes from the fact that we at-
tempt to separate from the FW signals those components that
are common to a set of overlapping pulses. Unfortunately,
this is not trivial for SR LIDAR: specifically, the number of
sources is typically larger than the number of observations,
implying that the resulting system of equations is underdeter-
mined. We can, however, impose some assumptions on the
FW signals and on the objects a pulse spot to promote spar-
sity. These, consist of assuming that the scene of interest is in
the far field, that reflections are highly concentrated in time
(i.e., small support) and that multiple objects are far-apart
(i.e., ≥ 1/2 pulse length ). This latter assumption implies
that reflections in the FW signal are disjoint.
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In this paper, we present preliminary results showing that
SR reconstruction is possible. Section 2 explains the LIDAR
pulse return and scanning model we have adopted while sec-
tion 3 describes the acquisition approach used to achieve LI-
DAR SR. Section 4 presents preliminary experimental results
illustrating sub-spot localization using synthetically enlarged
spots created from real LIDAR, presenting an optimization
approach for achieving spatial SR in the reconstructed range
map. Finally, our conclusions are discussed in section 5.

2. LIDAR MODEL

2.1. Return pulse model

In our depth/range SR acquisition approach, we assume that
the scene is in the far-field. In other words, the range from the
sensor to the reflected objects is much larger than the diame-
ter of the projected pulse spot. This assumption forces multi-
ple pulse reflections (if they are present) to be highly concen-
trated in time. In general, such reflections depend on several
factors which together determine how they affect the return
pulse waveform. Examples of these factors include the emit-
ted pulse characteristics, the angle of incidence between the
pulse and the object, the roughness and reflectivity of the in-
tercepted objects, the sensor-to-intercepted object range, the
influence of previously encountered objects (including occlu-
sion) [6]. Fortunately, we can model FW reflections using
parametric signals. Specifically, in [7] we approximated FW
reflections as the sum of a bandlimited and a non-uniform lin-
ear spline. In other words,

xnFW
(t) = xnbl

(t) + xn(t). (1)

Here, xnFW
(t) denotes the FW reflection, t and n denote,

respectively, the time and the index of the spatial location to-
wards which the pulse was emitted. The bandlimited compo-
nent xnbl

(t) describes the general signal level while the non-
uniform linear spline xn(t) models the multiple reflections
from the objects intercepted by the laser pulse. Since xn(t)
contains all of the information describing the pulse and its
interaction with the scene, we base our analysis only on this
signal component and discard xnbl

(t). This linear nonuni-
form spline component can be approximated as

x̂n(t) =

K∑
k=1

akϕ(t− tk) (2)

where ϕ(R+1)(t − tk) = δ(t − tk) with order R = 1 repre-
sents the linear spline functional andK is the number of knots
used for the spline approximation. This problem is equivalent
to that of estimating K dirac locations tk along with weights
ak, and it can be solved very efficiently using the finite rate
of innovations (FRI) method as described in [7]. In addition,
the FRI approach allows us to sample based on the number of
K parameters thus achieving high sampling efficiency. The

recovered and sampled FW signal and its components are de-
noted by xnFW

, xnbl
, xn ∈ R1×P , respectively. Here P , de-

notes the number of samples implied by the FRI approach.
Since the sampled modes in the FW signal can be approx-

imated by linear splines, we can use the matrix Ψ given by

Ψ =


1 0 0 · · · 0
2 1 0 · · · 0
...

...
. . . · · · 0

P-1 P-2 P-3
. . . 0

P P-1 P-2 · · · 1

 (3)

(i.e., the double integration matrix operator). Using (3) and
denoting the sparse signal innovations by γn allows us to ex-
press the linear spline components corresponding to the pulse
reflections as xn = γnΨT. As before, n denotes an index of
the corresponding element in the grid at the given resolution.

2.2. FW complexity

LIDAR compressive sampling approaches require that one
develop a model of the scene that supports sparse realizations
in a realistic manner [8], [9], [10]. This is very complicated
problem, however, because such models depend on many fac-
tors: e.g., on the scene’s three dimensional structure (e.g.,
depth/range, inclined terrain, planar terrain, multiple objects,
reflectivity of the materials) and on the emitted pulse char-
acteristics (angle of incidence, the fps, pulse energy varia-
tions across the fps, divergence) [6], [1]. All of these factors
contribute to the characterization of the scene response and,
as such, a general model is difficult to create. Here, we ex-
ploit instead FW reflection characteristics. In [11] the authors
effectively characterized FW signals as a function of scene
structure (e.g., smooth, detailed and random) and spot size.
This characterization allowed us to relate the FW return pulse
complexity to the complexity of the scene.

In this work we consider only reflections from multiple
objects whose ranges are separated by at least 1/2 the pulse
length. Such an assumption implies that the support of each
of the reflections is disjoint in the FW signal. Since we as-
sume the scene is in the far-field, reflections are highly con-
centrated in time. This implies that the response within the
FW waveform of each object within the laser spot has very
short temporal support. This property is assumed to be pre-
served regardless of the incidence angle between the pulse
and the reflecting object.

Ideally, the FW waveform response generated by each
specific object within the laser spot is a dirac function. Due to
the fact that reflecting surfaces are generally not perpendicu-
lar to the angle of incidence of the laser pulse, variations are
typically present. Fortunately, these are expected to be highly
concentrated in time and of small support. We also assume
here that scenes are generally smooth. This means that FW
signals will contain, in general, information about a single
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reflection which implies that data is highly compressible. Al-
though scenes are assumed to be generally smooth, scene dis-
continuities may appear at object boundaries and thus some
FW signals may contain data from multiple reflections.

2.3. Scanning

Scanning refers to in here as the process of emitting a series of
pulses, each in a slightly different direction so as to cover the
scene of interest. Some examples of scanning patterns typi-
cally used are the raster and the palmer scans. To define the
locations towards which a pulse is pointed and emitted prior
to acquisition, a grid which covers the entire scene of inter-
est is defined. This grid is composed of three dimensional
elements with two denoting spatial coordinates and the third
denoting the time index of the return pulse. The resolution
of each element in the spatial dimension is determined by the
spot size whereas the resolution of the third dimension is de-
termined by the temporal reconstruction possibilities implied
by the FRI recovery. Unfortunately, the size and geometry of
the pulse spot (typically a circle) varies based on the range,
the laser beam-divergence and the topography of the scene
[2]. For now, we assume that the spot size is fixed regardless
of the scanning geometry and the topography encountered.

The whole set of FW reflections obtained by scanning is
denoted by X = [x1, x2, ..., xN ]T ∈ RN×P , indexed in the
acquisition order of the raster scan. Here, N denotes the total
number of pulse emissions in the scan. Each emitted pulse xn
projects a spot covering the grid element indexed by n and is
directed towards the center of the corresponding grid element.
Thus, the set of sampled FW reflections is expressed as

X = ΓΨT (4)

where Γ = [γ1, γ2, ..., γN ]T is the set of signal innovations.

3. SPATIAL SUPER-RESOLUTION

3.1. Acquisition and Model

To begin our discussion about SR, we assume we have a set of
FW reflections denoted by Y = [y1, y2, ..., yM ]T ∈ RM×P ,
indexed in the same order as X in (4). Each ym corresponds
to a ‘large’ spot pulse covering several smaller ‘sub-spots’.
These sub-spots are assumed to be generated by pulse reflec-
tions embedded in xn. Thus, the problem of SR can be posed
as the problem of recovering X based on the observations

Y = ΦX = ΦΓΨT. (5)

where Φ ∈ RM×N with M < N is referred to as the obser-
vation matrix. Note that (5) implies a mapping from a grid
whose resolution is given by the size of the smaller sub-spots
corresponding to X to a grid with larger and fewer elements
corresponding to Y . We say SR is feasible if we can recover
X given Y from the underdetermined system in (5).

Because the spatial information inherent in the reflected
pulses is lost when a single photodetector is used, we resort
here to emitting pulses with overlapping spots. Doing this al-
lows us to localize multiple objects within the larger spot, thus
achieving SR. The localization is performed by estimating the
reflected components mutual to the overlapping pulses. The
characteristics of this overlap are modeled in the observation
matrix Φ. Within this model, we can incorporate the charac-
teristics of the pulse; for example the amount of overlap, the
energy distribution of the pulse as a function of space (e.g,
typically modeled by a Gaussian distribution) and changes in
the spot size and geometry due to off nadir incidence and in-
clined objects. In some situations, these characteristics are
unknown and thus there is some uncertainty about Φ. For-
tunately, we can resort to the techniques developed in blind
source separation [12], [13] to estimate Φ. In this paper, how-
ever, our objective is simply to show that SR is possible and
thus we limit ourselves to a very simple model of Φ.

With no assumptions made on X , recovery from the un-
derdetermined system in (5) is very difficult. However, we
can exploit the structure in X to construct optimization pro-
grams that recoverX exactly. In general, note thatX contains
the set of FW reflections and that Φ considers the columns
X(i) of X jointly for i ∈ (1, P ). Thus, based on the assump-
tions described in section 2.2—namely that the scene is in the
far-field, that reflections are highly concentrated and that each
of these reflections is disjoint with each other—we can en-
force some strong constraints on the structure of X . The first
two assumptions imply thatX is, in general, very sparse. The
reflections embedded in the FW return pulses of X will tend
to occur in blocks and to be of very small support. The third
assumption implies that reflections from multiple objects in
one FW return pulse are not likely to have the same support
as similar reflections in the remaining FW pulses in X . Alter-
nately, one could say that a reflection’s support will be highly
likely to be disjoint with the supports of other reflections.

If one further modifies (5) using the inverse of the second
order operator Ψ, then one can instead analyze

YΨ = Y (ΨT)−1 = ΦΓ. (6)

Under this form, the problem becomes recovering Γ which is
more sparse than X in general. As such, it is highly probable
that the joint sparsity of the columns Γ(i) is higher, and this,
in turn, implies that recovery can be improved.

4. A SIMPLE EXAMPLE

The data used here was obtained from NAVAIR China Lake,
CA and collected using the VISSTA ELT LADAR system.
The pulse emission rate of the system is 20 Khz where each
pulse is of 1.5 ns duration (calculated using 1/2 the maxi-
mum amplitude). Reflections are sampled at a rate, of 2 GHz
and quantized using an 8-bit A/D converter. The dataset used
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here was obtained by imaging a pickup truck through a chain
like fence both positioned approximately perpendicular to the
pulse transmission path. Figure 1 illustrates the range map
obtained by processing the collected FW signals using the
VISSTA system.

Fig. 1. 3D image with spatial resolution and ranges.

To show the feasibility of SR recovery, we simulate two
overlapping pulses of large spot size using the collected data.
The spots of these two simulated pulses cover the same area as
three pulses with smaller spot sizes. The overlap we consider
corresponds exactly to the size of one of the pulses of small
spot size. These FW’s are chosen from the locations in Figure
1 at the boundary between the chain link fence and the truck.
Based on this, we use X ∈ R3×P shown in Figure 2c and
obtain Y ∈ R2×P shown in Figures 2a and 2b using (5) and
the simple observation matrix model

Φ = 1
3

[
1 1 0
0 1 0

]
. (7)

As was stated earlier in (1), we use here only the part of our
model pertaining to the spline approximation given byX . Af-
ter Y is obtained, we assume no knowledge about X other
than sparsity, and attempt to recover X based on the follow-
ing optimization program

min ‖X(i)‖1 subject to ‖Y (i) − ΦX(i)‖2 ≤ ε. (8)

Since our goal is to find X , we independently recover the
columns of X denoted by X(i) for i ∈ (1, P ). To speed up
the recovery process and based on the fact that typical FW
reflections are highly concentrated in time and in the far field,
we avoid recovering X(i) when the columns Y (i) ∈ RM×1

have zero energy. In addition, the case when both observa-
tions in Y (i) are very similar is also trivial. The program in
(8) is repeatedly computed for all i ∈ (1, P ).

The result of applying (8) on the observations Y is shown
in Figure 2d. Note that very precise recovery is achieved as
can be seen by comparing the obtained result with the true FW
signals shown in 2c. In general, Figure 2d indicates that our
SR acquisition approach and recovery algorithm is capable of
separating, and thus localizing, the part of the signal pertain-
ing to the reflection occurring in the spot overlap. This in turn
implies that reflections corresponding to the non-overlapping
regions are also localized. Therefore, sub-spot localization
was achieved here, demonstrating the possibilities of our ap-
proach for achieving LIDAR SR.

(a) Large spot observations

(b) Zoomed Large spot observations

(c) True Super-resolution

(d) Super-resolution recovery

Fig. 2. Example showing sub-spot localization.

5. CONCLUSION

In this research, we present a LIDAR acquisition approach
which consists of the collection of FW reflections of large
and overlapping laser pulse spots to achieve spatial super-
resolution (SR). The overlap is used to localize multiple ob-
jects within the laser spot, thus achieving sub-spot localiza-
tion. For localization, source separation for sparse sources
was implemented successfully. This sparsity condition ap-
plies under the assumptions that the scene is in the far-field
and that multiple-objects are not to close to each other. A
simple example with real data was included, demonstrating
the potential of our acquisition approach to achieve SR. The
results show that given the assumptions stated here, precise
recovery of the SR map is possible.

2230



6. REFERENCES

[1] C. Mallet, F. Bretar, M. Roux, U. Soergel, and
C. Heipke, “Relevance assessent of full-waveform li-
dar data for urban area classification,” ISPRS Journal of
Photogrammetry and Remote Sensing, vol. 66, pp. 71–
84, October 2011.

[2] Y. Sheng, “Quantifying the size of a lidar footprint: A
set of generalized equations,” IEEE Geoscience and Re-
mote Sensing Letters, vol. 5, no. 3, pp. 419–422, July
2008.

[3] B. Schwarz, “Lidar mapping the world in 3d,” Nature
Photonics, vol. 4, pp. 429–431, July 2010.

[4] S.C. Park, M.K. Park, and M.G. Kang, “Super-
resolution image reconstruction: a technical overview,”
IEEE Signal Processing Magazine, vol. 20, no. 3, pp.
21–36, May 2003.

[5] J.F. Cardoso, “Source separation using higher order mo-
ments,” in IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 1989, pp.
2109–2112.

[6] C. Mallet, F. Lafarge, M. Roux, U. Soergel, F. Bretar,
and C. Heipke, “A marked point process for modeling
lidar waveforms,” IEEE Transactions on Image Process-
ing, vol. 19, no. 12, pp. 3204–3221, December 2010.

[7] J. Castorena and C.D. Creusere, “Compressive sampling
of lidar: Full-waveforms as signals of finite rate of inno-
vation,” in The 20th European Signal Processing Con-
ference (EUSIPCO-2012), August 2012, pp. 984–988.

[8] A. Kirmani, A. Colaco, F.N.C. Wong, and V. K. Goyal,
“Exploiting sparsity in time of flight range acquisition
using a single time-resolved sensor,” Optics Express,
vol. 19, no. 22, October 2011.

[9] G.A. Howland, P.B. Dixon, and J.C. Howell, “Photon-
counting compressive sensing laser radar for 3d imag-
ing,” Applied Optics, vol. 50, no. 31, pp. 5917–5920,
November 2011.

[10] P. T. Boufounos, “Depth sensing using active coher-
ent illumination,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2012, pp. 5417–5420.

[11] J. Castorena, C.D. Creusere, and D. Voelz, “Using fi-
nite moment rate of innovation for lidar waveform com-
plexity estimation,” in IEEE Conference Record of the
Fourty Fourth Asilomar Conference on Signals, Systems
and Computers (ASILOMAR). IEEE, 2010, pp. 608–
612.

[12] A. Belouchrani, K. Abed-Meraim, and J.F. Cardoso, “A
blind source separation technique using second-order
statistics,” IEEE Transactions on Signal Processing,
vol. 45, no. 2, pp. 434–444, 1997.

[13] P. Bofill and M. Zibulevsky, “Underdetermined blind
source separation using sparse representations,” Signal
Processing, vol. 81, pp. 2353–2362, 2001.

2231


