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ABSTRACT
This paper presents a new method to construct a dictionary for
example-based super-resolution (SR) algorithms. Example-based
SR relies on a dictionary of correspondences of low-resolution (LR)
and high-resolution (HR) patches. Having a fixed, prebuilt, dic-
tionary, allows to speed up the SR process; however, in order to
perform well in most cases, we need to have big dictionaries with
a large variety of patches. Moreover, LR and HR patches often
are not coherent, i.e. local LR neighborhoods are not preserved in
the HR space. Our designed dictionary learning method takes as
input a large dictionary and gives as an output a dictionary with a
“sustainable” size, yet presenting comparable or even better perfor-
mance. It firstly consists of a partitioning process, done according to
a joint k-means procedure, which enforces the coherence between
LR and HR patches by discarding those pairs for which we do not
find a common cluster. Secondly, the clustered dictionary is used to
extract some salient patches that will form the output set.

Index Terms— Super-resolution, dictionary learning, example-
based, neighbor embedding

1. INTRODUCTION

Single-image super-resolution (SR) refers to the task of producing a
high-resolution (HR) image from a single low-resolution (LR) input.
SR is an inherently ill-posed problem, that needs some prior infor-
mation to be solved. In example-based SR [1] the prior information
necessary to super-resolve the HR details is implicitly contained in
a dictionary of “examples”. These examples are intended, in most
cases, as correspondences of LR and HR patches, i.e. small squares
of pixels. In the SR process, then, also the LR input image is divided
into patches. By using the correspondences stored in the dictionary,
the output image is built patch by patch, i.e. each patch in the input
image is replaced by a HR one, conveniently reconstructed.

Evidently, in example-based SR the choice of the dictionary
plays an important role. At this regard, two main kinds of dictionary
are possible: external or internal. An external dictionary is formed
by sampling HR and LR patches from external training images, re-
spectively some chosen high-definition images and their degraded
versions. We speak about an “internal dictionary”, instead, when no
proper dictionaries are stored, but we learn the LR/HR patch corre-
spondences by putting in relation directly the input image and recur-
sively scaled versions of it, so exploiting the so-called self-similarity
property of natural images (e.g [2, 3]).

The clear advantage of having an external dictionary is that it is
built in advance: this leads to a reduction on the computational time,
whereas in the internal case the dictionary is generated online at each
run of the algorithm. Moreover, if we construct the dictionary in a
recursive fashion as in [3], its size turns to grow exponentially with

the image size: in this case the running time of the algorithm can
increase even dramatically, as the neighbor search operation is usu-
ally the most time-consuming. On the other hand, a disadvantage
of external dictionaries is that they are fixed and so non-adapted to
the input image. To be able to satisfactorily process any input, we
need to include in the dictionary a large variety of patch correspon-
dences, so turning back to a higher computational time due to the
large dictionary size.

In [4], a dictionary learning strategy is proposed, to construct
compact dictionaries: under the assumption that a LR patch can be
sparsely represented with respect to the patches in the dictionary,
new patch vectors are learned as bases for sparse representations.
In contrast to [4], we want to design a dictionary learning strategy
generally valid for example-based SR algorithms with finite com-
binations of patches, without relying on the sparse assumption. We
propose then a method that addresses as well the problem of creating
a compact, yet flexible and efficient, external dictionary for SR pur-
poses, to use as a “passe-partout” for any kind of input image. Our
method consists of two steps: a first clustering process that gathers
the LR and HR patches of the dictionary into jointly coherent clus-
ters; and a second phase that aims at extracting from the clustered
dictionary a set of particularly representative patches that can ex-
press the whole dictionary in a compact way. The clustering step is
partially similar to the method proposed in [5], where, however, the
k-means clustering is done by referring only to the LR patches and
is not a joint procedure.

The rest of the paper is organized as follows. Section 2 fur-
ther discusses the problem of the dictionary in the framework of
example-based SR. Then, Section 3 describes our proposed dictio-
nary learning strategy, composed of the two mentioned steps. Before
concluding, in Section 4 we validate the dictionary learning strategy,
by testing that with an example-based SR algorithm, and present
some numerical and visual results.

2. EXAMPLE-BASED SUPER-RESOLUTION WITH AN
EXTERNAL DICTIONARY

Single-image example-based SR includes all those learning meth-
ods that make use of LR/HR patch correspondences to infer the HR
content. We refer specifically to nearest neighbor (NN) based SR
methods as those example-based techniques, which involve, at the
single patch reconstruction stage, a K-NN search: for each LR in-
put patch K LR candidates in the dictionary are taken into account,
and the corresponding HR candidates are used to generate the re-
lated output patch. The basic steps of NN-based SR, repeated for
each input patch, can be briefly summarized as follows:

1. NN search: search for the K best matching LR candidates in the
dictionary;
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2. Weight computation: assign a weight to each of the selected K
LR candidates;

3. HR patch reconstruction: combine the corresponding HR candi-
dates to reconstruct the HR output patch, according to the weights
computed.

Generally, all patches, both in the dictionary and in the target
image, are represented as feature vectors, i.e. vectors obtained by
concatenating certain features computed over their pixel values. In
this paper we use our developed algorithm described in [6], based
on nonnegative embedding and “centered features” (mean-removed
luminance values). Here, the weights of each patch combination
(step 2) are the result of a nonnegative least squares (LS) problem,
which aims at finding the best LS approximation of the related input
patch by allowing only additional combinations of patches.

For the sake of designing fast-performing SR algorithms, we de-
cide to use an external dictionary, as also claimed in [6]. Having a
fixed dictionary does not require online operations while the SR al-
gorithm is running; however a unique dictionary could not be suit-
able for any input image. This effect can be observed in Table 1,
where the performance of the nonnegative embedding SR algorithm
[6] in terms of PSNR of the super-resolved image is reported, when
tested with different images and 5 equally-sized dictionaries. As we
can see, the results are quite different depending on the dictionary
chosen, and the best outcomes for each input image are reached not
always with the same one.

Dictionaries
Image Scale ESA Flower Heads Synth Wiki
Bird 4 29.51 29.87 29.76 28.81 29.12
Butterfly 4 22.45 22.00 21.70 21.57 21.98
Eyetest 4 17.52 17.33 17.20 18.72 17.13
Head 4 30.55 30.85 30.69 30.35 30.42
Newspaper 4 21.93 21.92 22.01 21.88 21.68

Table 1: PSNR values of [6], tested with 5 different dictionaries.

In Section 3 we propose a new strategy to build a dictionary, that
overcomes the problem of the general non-adaptability of external
dictionaries, by building a “general-purpose” dictionary.

3. LEARNING OF A COMPACT AND COHERENT
DICTIONARY

An issue with NN-based SR methods, pointed out e.g. in [7], is that
selected LR neighborhoods are not preserved when passing to the
HR domain, i.e. the HR candidates we actually use to generate the
HR output patch are not assured to stay neighbors each others. We
call it a lack of “coherence” between the LR and HR patches. This
problem is present in any method that requires a NN search, and it
is particularly crucial for neighbor embedding based SR methods as
[8, 6], where the computed weights are meant to capture the local
geometry of the patch neighborhoods.

In Section 3.1 we propose a new strategy to limit this problem,
based on a joint k-means clustering of the initial dictionary. In Sec-
tion 3.2 we address the problem of designing a compact general-
purpose dictionary, thus coming up with a new efficient way of dic-
tionary learning.

3.1. Joint k-means clustering

In order have a neighborhood preservation, and so provide a better
coherence between LR and HR patches, we propose to jointly cluster

the LR and HR patches of the dictionary, with a procedure similar to
the classical k-means approach. We call this algorithm joint k-means
clustering (JKC). 1

The input of the algorithm is a dictionary D = (X ,Y), formed
by N LR/HR patch co-occurrences, where X = {xi}Ni=1 is a set
of LR patch vectors and Y = {yi}Ni=1 is the set related to their
HR counterparts. Let k be the chosen number of clusters, we define
then a set of cluster centers {cj}kj=1, where each center cj includes
a LR and a HR part, respectively cxj and cyj . A joint patch vector
zi = (xi,yi) is considered to be part of a certain cluster if both xi

and yi share the same center.
To implement this idea we adopt a modified version of the tradi-

tional Lloyd’s algorithm [9], with the two alternating steps (cluster
assignment and re-centering), which can be summarized as follows:

1. Arbitrarily initialize the k centers.

2. (Cluster assignment) For each i ∈ {1, . . . N}, L(i) = j′ if
both cxj′ and cyj′ are the closest centers to, respectively, xi

and yi; otherwise L(i) = 0.

3. (Cluster re-centering) For each j ∈ {1, . . . k}, we de-
fine the related cluster Cj = {zi s.t L(i) = j} and
re-compute the joint center: cxj = 1

|Cj |
∑

xi∈Cj
xi and

cyj = 1
|Cj |

∑
yi∈Cj

yi.

4. Repeat steps 2 and 3 until L no longer changes.

In the procedure described, L is a vector of labels, which keeps
track of the vector assignments. We have L = 0 for those vec-
tors that do not find any placement, i.e. do not belong to the same
neighborhood (cluster) of LR and HR patches. These vectors are
temporarily discarded, i.e. they are put in a “trash cluster”, but they
are taken into account again at the next iteration, as new centers are
computed.

3.2. Looking for a compact representation

Table 1, as it shows that each dictionary performs more or less well
depending on the input image, suggests that we should build the dic-
tionary starting from many images, in order to capture as much vari-
ability in the image contents as possible. However, this leads to an
increase of the dictionary size, and so of the running time of the al-
gorithm. Thus, a strategy to subsequently reduce the dictionary is
needed.

We propose to use JKC as a starting point to design such a strat-
egy. The jointly clustering procedure, as said, is performed in order
to impose the LR and HR patches to share the same neighborhoods,
i.e. to respect a sort of “coherency” property. We believe that, if we
sample the clustered dictionary by taking those pairs of patches that
better respect this property, we would be less effected by the pruning
effect, i.e. the decrease of performance due to the fact that we would
have a smaller dictionary.

Therefore, to reduce the size of the dictionary, we first get rid
of the “trash cluster”, i.e. those pairs of patches that did not find a
placement after the clustering procedure. For these pairs, the related
LR and HR patches are not supposed to be in corresponding LR
and HR neighborhoods. We assume that, by eliminating these “bad
pairs”, we do not loose too much in terms of final results. Secondly,
to further decrease the dictionary size, we sample it, by taking a few
prototypes per cluster. To do that, we choose to take for each cluster

1In the text “small k” (k) indicates the number of partitions of the cluster-
ing process, whereas “capital k” (K) indicates the number of nearest neigh-
bors taken at the patch reconstruction stage of the proper SR algorithm.

2223



the most central elements, i.e. the M closest ones to related center.
The sampling is performed in order to select compact and coherent
neighborhoods.

As a last step, we consider some simple geometrical transfor-
mations of the patches, 3 rotations (for multiples of right angle) and
4 symmetrical reflections (see Fig. 1). These transformations are
intended to enrich the dictionary with substantial variations in the
patch structures, so balancing the bad effect of the pruning. The pro-
totypes and their transformed versions are finally used to form a new
dictionary.

Fig. 1: Geometrical transformations applied to the patches.

The so-designed dictionary learning process can be summarized
in the following steps:

• Take as input a large dictionary of patches obtained with
multi-nature natural image

• Perform JKC on this large dictionary

• Keep only M prototypes per cluster

• Apply the geometrical transformations to the prototypes

The size of the dictionary finally created is at most 8Mk pairs
of patches (“at most” because not all clusters may have at least M
elements).

4. EXPERIMENTAL ANALYSIS AND RESULTS

To test the dictionary learning strategy described in Section 3, we
start from a large dictionary, concatenation of the 5 dictionaries men-
tioned in Table 1. The size of each single dictionary is 56000 pairs
of patches; therefore, the size of the big one is 280000 pairs. The
large dictionary is firstly used as an input of the JSK algorithm with
k = 750. Some information about the convergence of the JSK clus-
tering procedure applied to the large dictionary, e.g. the cost error
value (intended as the difference between the current centers and
those ones at the previous iteration), as well as some other statistics,
are reported in Table 2.

As we can see from Table 2, the algorithm converges exactly to
a solution after 113 iterations. The number of non-assigned patches
(those ones in the “trash cluster”) decreases progressively.

Once the big dictionary has been clustered, the patch selection
phase is started: only the M = 12 most central vectors are kept as
“prototypes” of the clusters. The explained geometrical transforma-
tions are also applied. M is chosen such that the size of the final
dictionary is comparable to the one of the starting dictionaries (i.e.
around 56000 pairs), so achieving a reduction of the size of the big
dictionary of about 1

5
. We run then the nonnegative embedding based

SR algorithm of [6], for several images and two different factors (3
and 4). The results for all the dictionaries are reported in Table 3,
where “BIG” stands for the concatenated dictionary and “FINAL”

Iteration Cost error # non-assigned
1 0.006285 205412
2 0.000357 127718
5 0.000056 95007
25 0.000008 86305
50 0.000004 84657
113 0 83655

% of placed vectors 70.1%
Min cluster size 1
Max cluster size 53270
Avg cluster size 261.8

Table 2: Prospect of convergence and other statistics of the JSK
algorithm applied to a dictionary of 280K pairs.

for the final dictionary we learn from it with our method (JSK +
prototype selection).

Dictionaries
Image Scale ESA Flower Heads Synth Wiki BIG FINAL
Bird 3 32.13 32.42 32.17 31.21 31.88 32.27 32.31
Butterfly 3 24.89 24.22 23.77 23.95 24.37 24.94 25.06
Eyetest 3 18.99 18.64 18.58 20.58 18.62 20.48 20.55
Head 3 31.86 32.07 31.92 31.73 31.74 31.96 31.75
Newspaper 3 23.79 23.55 23.73 23.48 23.35 23.78 23.85
Bird 4 29.51 29.87 29.76 28.81 29.12 29.51 29.90
Butterfly 4 22.45 22.00 21.70 21.57 21.98 22.48 22.46
Eyetest 4 17.52 17.33 17.20 18.72 17.13 18.74 18.94
Head 4 30.55 30.85 30.69 30.35 30.42 30.70 30.82
Newspaper 4 21.93 21.92 22.01 21.88 21.68 22.02 22.06

Table 3: PSNR values of [6], tested with 5 different dictionaries, the
concatenation of them, and our designed dictionary.

As we can see from Table 3, the new constructed dictionary per-
forms better than any input dictionary almost overall, while the size
being comparable, confirming its goodness as a general-purpose dic-
tionary. A significant case is represented by the “Eyetest” image, to
which only one of the input dictionary is suitable (“Synth”): that
means that a really particular image content is required to super-
resolve it. Our designed dictionary succeeds also in this case. The
good results are confirmed by Fig. 2, where for 8 images (magni-
fied by 4) we report the results of the worst and best dictionaries,
according to each particular image, and our trained dictionary: the
latter is always able to match the best performance, even if the best
dictionary is different for each test image.

In comparison with the big dictionary is learned from, our con-
structed dictionary generally gives even better results, while having
a markedly reduced size. The evolution of the PSNR, by consid-
ering all the steps between the big dictionary and the one finally
constructed is reported in Table 4. The table shows the intermedi-
ate results after the first pruning step (removal of the trash cluster),
and after the sampling of M prototypes per cluster (i.e. before the
geometrical transformations are applied). The table also shows the
results when our dictionary construction strategy is applied to a dic-
tionary clustered via a traditional k-means procedure applied on the
concatenated LR-HR vectors, instead of JKC.

By looking at Table 4, we can see that, in the case of JKC,
the pruning step usually brings only a slight decrease of the per-
formance. A bigger, but still not dramatic, decrease is brought by
the prototype sampling step, as the dictionary size drops severely.
This effect is positively counterbalanced by the application of the
geometrical transformations, that leads to the final dictionary. When
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Fig. 2: Performance of our constructed dictionary w.r.t. the best and
worst single dictionary for any test image considered.

JKC k-means
Image Scale BIG Prun. Sampl. FINAL Sampl. FINAL

dict. size→ 280000 196345 7060 56480 7139 58552
Bird 4 29.51 29.60 29.35 29.90 29.68 29.72
Butterfly 4 22.48 22.34 21.99 22.46 21.75 21.74
Eyetest 4 18.74 18.61 18.22 18.94 17.31 17.26
Head 4 30.70 30.71 30.68 30.82 30.75 30.83
Newspaper 4 22.02 21.95 21.96 22.06 21.96 22.06

Table 4: Evolution of the PSNR, from the big dictionary to the one
finally constructed, for JKC and standard k-means applied to the
concatenated LR-HR vectors.

comparing JKC to the k-means clustering applied to the concate-
nated vectors, we observe appreciably better results, so proving the
effectiveness of the jointly clustering procedure.

Finally, Fig. 3 reports some visual results for the “Bird”, “Butte-
fly”, and “Head” images, all magnified by a factor of 3. Our nonneg-
ative embedding based algorithm [6] is compared with the pyramid-
based algorithm of [3], which is considered at the top of the state-of-
the-art and uses internal information (i.e. self-similarities found in a
pyramid of recursively scaled images) instead of an external dictio-
nary. For [3], we report the outputs obtained thanks to a third-party
implementation of the algorithm. The nonnegative embedding based
algorithm, instead, is tested with one of the input dictionaries of Ta-
ble 3 and the final dictionary learned with the proposed strategy.

As we can see from the figure, the use of the new dictionary
appreciably improves the visual results of the nonnegative embed-
ding SR algorithm (e.g. see the bamboo cane in the bird image).
This makes it get closer to the performance of the pyramid-based al-
gorithm of [3], which presents generally less blurred but somehow
unnatural images. On the other hand, the algorithm in [3] requires
much higher computational times (see Table 2 in [6]).

5. CONCLUSION

In this paper we described a novel method to construct an exter-
nal dictionary for single-image super-resolution (SR) purposes. The
method is performed totally off-line, i.e. once the dictionary is cre-
ated it is ready to be used, and involves two steps: the joint k-means
clustering (JKC), a joint clustering of the LR and HR patches of
the dictionary that represents an original variation to the well-known
k-means algorithm, and a selecting phase, where only the essential
patches are kept (the “prototypes” of each cluster). When used with
the NN-based SR algorithm of [6], the so-learned dictionaries are

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

Fig. 3: Visual comparisons between the pyramid-based algorithm of
[3] (a) and the nonnegative embedding algorithm [6] with the “Esa”
dictionary (b) and the final dictionary (c).

showed to perform generally well, independently of the input image.
With comparable dictionary sizes, they perform better than any sin-
gle non-processed external dictionary. Moreover, they help filling
the gap between the one-pass NN-based SR algorithms that make
use of external dictionaries and more sophisticated SR algorithms,
as [3], which rely on image self-similarities. As for the possible fu-
ture work, we plan to work on a formal proof for the convergence of
the JKC algorithm, which we believe possible under certain assump-
tions.
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