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ABSTRACT

Least square regression has been widely used in image interpolation.
Some existing regression-based interpolation methods used ordinary
least squares (OLS) to formulate cost functions. These methods usu-
ally have difficulties at object boundaries because OLS is sensitive to
outliers. Weighted least squares (WLS) is then adopted to solve the
outlier problem. Some weighting schemes have been proposed in the
literature. In this paper we propose to use geodesic distance weight-
ing in that geodesic distance can simultaneously measure both the
spatial distance and color difference. Another contribution of this
paper is that we propose an optimization scheme that can handle
arbitrary factor interpolation. The idea is to separate the problem
into two parts, an adaptive pixel correlation model and a convolution
based image degradation model. Geodesic distance weighted 2D
autoregressive model is used to model the pixel correlation which
preserves local geometry. The convolution based image degradation
model provides the flexibility to handle arbitrary interpolation factor.
The entire problem is formulated as a WLS problem constrained by
a linear equality.

Index Terms— interpolation, geodesic distance, autoregressive
model, arbitrary factor

1. INTRODUCTION

Image interpolation aims to get a High Resolution (HR) image from
a corresponding Low Resolution (LR) image through interpolation
technique. Conventional linear interpolation methods include bilin-
ear and bicubic interpolation. Although their complexity is relatively
low, they have common drawback that they cannot adapt to varying
pixel structures in an image because of the use of constant interpo-
lators. As a result, they suffer from some inherent defects such as
staircase effect, blurred details, and ringing artifacts.

To solve the common drawback of linear interpolation, adap-
tive interpolation methods have been proposed in which local ge-
ometric structures are better preserved. Li and Orchard proposed
New Edge Directed Interpolation (NEDI), in which the interpola-
tion coefficients are estimated from LR image and then applied on
HR image, assuming geometric duality holds for a local window [1].
In [2] Zhang and Wu extended NEDI by proposing a Soft-decision
Adaptive Interpolation (SAI) method, in which the interpolation co-
efficients are still estimated from LR image, but the pixel values of
HR image are estimated by averaging multiple estimators from over-
lapped blocks.

One common problem with NEDI and SAI is that they use ordi-
nary least squares (OLS) estimation for the interpolation coefficients.
OLS has an intrinsic drawback that it is prone to outliers. Thus at re-
gions of object boundaries, both NEDI and SAI have problems to
accurately estimate HR pixel values. To solve this problem some

weighted least squares (WLS) based methods have been proposed.
In [3] Zhang et. al. suggested to use nonlocal means for weighting
the residuals; In [4] Huang et. al. suggested using bilateral filter for
weighting; In [5] Liu et. al. proposed combining bilateral filter and
nonlocal means for weighting; In [6] Hung et. al. proposed using
covariance to weight the residuals. In this paper we propose to use
geodesic distance weight for both parameter and data estimation, in
that geodesic distance can simultaneously measure both the spatial
distance and color difference.

There are also some other problems with the above mentioned
NEDI-based methods. Firstly, geometric duality may not always be
true. For fine textures, the pixel correlations at different scales are
different. Interpolation coefficients learned in a larger scale cannot
be directly used in a smaller scale. Secondly, those NEDI-based
methods can only handle zooming factor of two. For other zooming
factors, they have to do adaptively interpolation multiple times, and
then apply a conventional linear interpolation such as bicubic. For
example to do 1.8 times zooming they have to first interpolate the
image to 2 times large, then downsample it by 0.9 times, resulting in
an image of 1.8 times large in the end. In this process, errors may
accumulate and thus produce some artifacts such as blurring.

To solve the problem of estimating interpolation coefficients
at different scales, we proposed AutoRegressive model and Gauss-
Seidel optimization (ARGS) in our previous work [7]. In this paper
we further improve the interpolation coefficient estimating by split-
ting the Gauss-Seidel iterations into two steps. At the first step
(first Gauss-Seidel iteration) only LR pixels are used to estimate the
interpolation coefficients, since all other pixels are untrustworthy.
At the second step (following Gauss-Seidel iterations) all pixels are
used to estimate the interpolation coefficients.

To solve the problem of being unable to handle arbitrary factor
interpolation, we propose to combine convolution based interpola-
tion and adaptive interpolation. The idea is to separate the target
problem into two parts, an adaptive pixel correlation model serving
as a cost function and a convolution-based image degradation model
serving as a constraint. Piecewise autoregressive model (PAR)
model is used for the adaptive pixel correlation modeling. The
image degradation process is modeled as convolution-based image
downsampling which is flexible enough to adapt to any zooming
factor and any kernel, and can be used as a linear constraint to the
PAR least square problem.

The rest of the paper is organized as follows. In section 2 we
explain the algorithm, including the geodesic distance in 2.1 and the
weighted 2-D autoregressive modeling in 2.2. We present the soluton
of this problem in section 3. The experiment results are given in 4.
And we conclude our work in section 5.
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2. ALGORITHM

2.1. Geodesic Distance

The idea of geodesic distance weighted least squares is to incorpo-
rate the spatial correlation of pixels within a local block into the
least square cost function. The strength of geodesic distance is that
it simultaneously incorporates both spatial distance and pixel value
distance, and is very robust to outliers [8]. Define the center pixel
c of a local block as most important, i.e. its weight is 1. Then the
importance of the cost of another pixel p is inversely proportional
to its geodesic distance to the center pixel, D(p, c). The geodesic
distance D(p, c) is defined as the shortest path that connects p with
c:

D(p, c) = min
P∈Pp,c

d(P )

where Pp,c is the set of all paths connecting p and c. A path P is
defined as a sequence of spatially neighboring points in 8-connected
neighborhood. Let the sequence P be P = {p1, p2, . . . , pn}, then
the cost is computed by

d(P ) =

n∑
i=2

dC(pi, pi−1)

with dC(pi, pi−1) = |I(pi) − I(pi−1)| measuring the color differ-
ence between pixel pi and pi−1 of image I . Intuitively, if there exists
a path between pixel p to the window center c along which the in-
tensity does not change much, the geodesic distance D(p, c) is low.
And larger weights should be given to the pixels that has smaller
geodesic distances to the center pixel c:

θ(p, c) = exp

(
−D(p, c)

β

)
where β is a user-defined parameter controlling the importance of
geodesic distance weighting. A smaller β means a higher importance
of geodesic distance weighting. Although computing the geodesic
distance for all pixels in a local window is a NP-hard problem, a fast
approximation algorithm is reported in [8].

2.2. Weighted 2-D Autoregressive Modeling

Assuming the geometric property of a local window in a natural im-
age is constant, an image can be modeled as a piecewise autoregres-
sive (PAR) process [2]

X(i, j) =
∑

(m,n)∈T

α(m,n)X(i+m, j + n) + vi,j (1)

where T = {(−1,−1), (−1, 0), (−1, 1), (0,−1), (0, 1), (1,−1),
(1, 0), (1, 1)} is the set of 8-connected neighborhood, vi,j is a ran-
dom perturbation independent of spatial location and the image
signal. α(m,n) is the autoregressive coefficient for the (m,n)-
th neighbor of pixel X(i, j), which is assumed constant in local
window T but different between different windows.

Let Ih be the HR image to be estimated by interpolating the
observed LR image Il, which is a downsampled version of the HR
image by an arbitrary factor. Let xi ∈ Il and yi ∈ Ih be the pixels
of images Il and Ih, yi�t (t = 1, 2, . . . , 8) be the neighbors of pixel
location i in the HR image. The HR image can be estimated block
by block with the following weighted least squares problem

min
{y,α}

F (y, α) =∑
i∈W

(yi −
∑
t

αtyi�t)
2θ(yi, yc)

s.t. DHỹ = x (2)

where W is a window of HR image Ih, yi is the i-th pixels in W
counted in scanning order, yc is the center pixel ofW , x is the vector
of LR pixels that are inside W , H is anti-aliasing filter matrix, D
is decimation matrix, and sampling matrix S = DH computes LR
pixel vector x from HR block. ỹ is the vector of all HR pixels related
to x, including y and pixels outside W . Let v be the vector of pixels
outside W but related to x, then we have ỹ =

[
yT vT

]T . Note
that with different sampling matrix S, the outer-pixel vector v can
be different. For example when H is identity matrix, meaning there
is no anti-aliasing filtering before downsampling, then v = 0. Let
S = [Sy, Sv] where Sy consists of the columns corresponds to y and
Sv consists of the rest columns which correspond to v, the equality
constraint can be written as[

Sy Sv
] [ y

v

]
= x

⇐⇒ Syy = x− Svv

In our implementation we assume the downsampling kernel is bi-
linear for its simplicity. An optimal kernel may be estimated based
on the test image’s characteristics before interpolation, however we
found generally the results of bilinear kernel are fairly good.

The problem with Eq. (2) is that it treats diagonal and hori-
zontal/vertical (HV) neighbors equally. However since they have
different spatial distance to the center pixel, they should have dif-
ferent influence strength. Therefore we further split the neighboring
position set T into two sets T = {Td, Thv}:

Td = {(−1,−1), (−1, 1), (1,−1), (1, 1)},
Thv = {(−1, 0), (0,−1), (0, 1), (1, 0)}.

Diagonal neighbors of x(i) are defined as xdt (i) = x(s(i) +
Td(t)), t = 1, . . . , 4, HV neighbors of x(i) are defined as xhvt (i) =
x(s(i)+Thv(t)), t = 1, . . . , 4, where s(i) is the 2D position vector
of pixel x(i). The interpolation coefficients are also split into two
sets, α = {a, b} where a corresponds to diagonal neighbors and b
corresponds to HV neighbors. Then our problem is reformulated as

min
{y,a,b}

F (y, a, b) =

∑
i∈W

(
(y(i)−

4∑
t=1

aty
d
t (i))2 + λ2(y(i)−

4∑
t=1

bty
hv
t (i))2

)
θ(yi, yc)

s.t. Sỹ = x (3)

where λ2 controls the importance of HV neighbors over diagonal
neighbors. This parameter serves as an additional degree of freedom.

3. JOINT OPTIMIZATION USING GAUSS-SEIDEL
ITERATIONS

As shown in [7] that the ordinary least squares (OLS) problems
can be effectively solved using Gauss-Seidel method. For weighted
least squares (WLS) the optimization is quite similar, since here the
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weights θ(yi, yc) are precomputed and can be treated as constant
during optimization.

Gauss-Seidel method is to alternatively fix one set of variables
and optimize on the other set. The iterative equations of this problem
are as follows.

{a(n+1), b(n+1)} = arg min
a,b

F (y(n), a, b) (4)

y(n+1) = arg min
y

F (y, a(n+1), b(n+1)) (5)

Initial value of y can be obtained by bicubic interpolation.

3.1. Estimating interpolation parameters

For (4), since a and b are naturally decoupled, it can be divided into
two sub-problems, and a and b have closed form solutions:

a(n+1) = arg min
a

∑
i∈W

(yi −
∑
t

aty
d
i�t)

2θ(yi, yc)

b(n+1) = arg min
b

∑
i∈W

(yi −
∑
t

bty
hv
i�t)

2θ(yi, yc)

The above weighted least squares minimization have closed form
solution as follows [9].

a(n+1) = (Y Ta (ΘYa))−1Y Ta (Θy)

b(n+1) = (Y Tb (ΘYb))
−1Y Tb (Θy)

where Θ = diag(θ(y1, yc), θ(y2, yc), . . . , θ(yk, yc)) ∈ Rk×k is a
diagonal matrix of all weights. Ya is the matrix of diagonal neigh-
bors of y (the i-th row of matrix Ya consists of the diagonal neigh-
bors of yi, i.e. Ya(i, ·) = [ydi�1, y

d
i�2, y

d
i�3, y

d
i�4]). Yb is the matrix

of HV neighbors of y (the i-th row of matrix Yb consists of the HV
neighbors of yi, i.e. Yb(i, ·) = [yhvi�1, y

hv
i�2, y

hv
i�3, y

hv
i�4]). Note that all

elements of y are inside W , however elements of Ya and Yb may
be outside W . For the ease of representation we denote a(n+1) and
b(n+1) by â and b̂ when estimating image data.

At the beginning step of this Gauss-Seidel iterations, since most
of the HR pixels are untrustworthy, we learn the parameters from
LR pixels only. And based on the geometric duality assumption,
the same parameters are used to estimate HR pixel values. Then at
following iterations we learn the parameters from HR pixels until
convergence.

After a, b are computed, the λ value in Eq. 7 can be estimated
by the fitting error of a and b:

λ = ‖y − Yaa‖2/‖y − Ybb‖2 (6)

3.2. Estimating image data

For (5), we have only ỹ as a variable in the cost function

F (y) =
∑
i∈W

((y(i)−
4∑
t=1

aty
d
t (i))2

+λ2(y(i)−
4∑
t=1

bty
hv
t (i))2)θ(yi, yc)

= (Cdỹ)T (ΘCdỹ) + λ2(Chv ỹ)T (ΘChv ỹ)

Table 1: PSNR (dB) results of different interpolation methods ap-
plied on bilinear downsampled images.

Images lanczos [11] NEDI [1] SAI [2] proposed
baboon 24.04 23.02 23.15 25.14

bike 24.70 22.82 22.95 26.72
flower 22.48 20.78 20.96 23.53
lena 33.28 30.02 30.19 35.76

necklace 21.49 18.87 19.19 23.16
parrot 32.60 30.45 30.56 35.02

building 24.34 22.74 22.75 27.65
tree 27.50 25.04 25.32 29.51

average 26.30 24.22 24.38 28.31

where

Cd(i, j) =


1, if ỹj = yi

−ât, if ỹj = ydi�t
0, otherwise

, t = 1, . . . 4

Chv(i, j) =


1, if ỹj = yi

−b̂t, if ỹj = yhvi�t
0, otherwise

, t = 1, . . . 4

By defining C =
[

(Cd)T λ(Chv)T
]T

=
[
Cy Cv

]
,

Θ′ = diag(Θ,Θ), where Cy consists of the columns of C corre-
sponding to y, Cv consists of the remaining columns of C corre-
sponding to v, we have

y(n+1) = arg min
y

F (y) = (Cỹ)T (Θ′Cỹ)

4
= (Cyy + Cvv)T (Θ′Cyy + Θ′Cvv)

s.t. Syy = x− Svv (7)

This equality constrained quadratic optimization has a closed
form solution by applying Karush–Kuhn–Tucker (KKT) conditions
(§10.1.1 of [10]):[

y
µ

]
=

[
CTy (Θ′Cy) STy

Sy 0

]−1 [ −CTy (Θ′Cv)v
x− Svv

]
(8)

where µ is Lagrange multiplier which can be ignored.

4. EXPERIMENT RESULTS

In our experiments we test eight natural images, most of which con-
tain complex textures which are difficult for interpolation. LR im-
ages are obtained by using bilinear downsampling on HR images and
PSNR values are calculated as a measure of performance. Table. 1
shows the PSNR results of applying different interpolation methods
for zooming factor of 2. We choose this zooming factor so that we
can compare our algorithm with some existing ones. As can be seen
that our proposed method performs best for all images. On average
we have about 2dB gain over the lanczos which is the second best.

Fig. 1 shows the results of different interpolation algorithms.
Lanczos interpolation methods generate blur HR images. SAI
method preserves strong edge structures very well. The edges are
also sharper than bicubic and lanczos. However, the results of NEDI
and SAI are still a little blur. Compared to all the other methods, the
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(a) original (b) NEDI

(c) SAI (d) proposed

Fig. 1: Results of different interpolation methods applied on bilinear
downsampled baboon images. Due to space limit, only a part is
shown.

proposed method generates much sharper and more natural result.
Special attention may be paid on the hair region where our result
contains more natural details, and also the face region where NEDI
and SAI methods generate over-smooth results.

To evaluate the effectiveness of the geodesic distance weight-
ing, we draw the residual image in Fig. 2. In the highlight region
we can see that with weighting the strong edge is better recovered.
However we also notice in regions with less strong edges, the re-
sult with geodesic distance weighting has larger residual. A possible
reason may be that geodesic distance is sensitive to noise. Some
region-based technique such nonlocal means may be used to further
improve the geodesic distance weighting.

One may think that SAI interpolation (may be performed multi-
ple times) followed by simple convolution based interpolation (e.g.
bicubic) is enough for arbitrary factor interpolation (as suggested in
[2]). We have found that this “SAI+bicubic” scheme is not good
enough in general. Fig. 3 shows the interpolation results of applying
different methods on original lena image with zooming factor 1.8
(no downsampling is involved in this example). For the proposed
algorithm, we directly interpolate the original image to 1.8 times of
original size. For SAI algorithm we first interpolate it into 2 times
large and then downsample it by 0.9 using bicubic kernel, resulting
in an image of 1.8 times of original size as well. We can see that Fig.
3(a) is quite blur. On the other hand, the proposed method generates
much sharper result, and also the lines of hair are more continu-
ous. The only problem is that there is more noise in the proposed
algorithm’s result, which is because the proposed algorithm tries to
recover high frequencies from the original, including both the real

(a) without weighting (b) with weighting

Fig. 2: Absolute residual multiplied by four.

(a) SAI + bicubic (b) proposed algorithm

Fig. 3: Results on original lena image with zooming factor 1.8. (a)
SAI (2× enlarge) followed by bicubic (0.9× shrink). (b) the pro-
posed algorithm.

image detail and unpleasant noise. We believe there is still room for
improvement.

5. CONCLUSION

In this paper we propose an effective arbitrary factor interpolation al-
gorithm based on geodesic distance weighted autoregressive model.
Geodesic distance weighting makes the autoregressive model more
robust to outliers and recovers better at object boundaries. The im-
age degradation constraint ensures the result HR image agree with
the LR input image, and it can adapt to arbitrary zooming factor
and arbitrary convolution kernel. Thus the resulting HR images are
smooth along edge direction and sharp across edge direction. Exper-
iment results show that while achieving arbitrary factor interpola-
tion, our proposed algorithm also achieves higher visual quality than
conventional adaptive interpolation method SAI.
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