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ABSTRACT

This paper addresses stochastic geometry-driven im-
age models and its application to super-resolution issues.
Whereas most stochastic image models rely on some priors
on the distribution of grey-level configurations (e.g., patch-
based models, Markov priors, multiplicative cascades,...), we
here focus on geometric priors. We aim at simulating tex-
ture samples while controlling high-resolution geometrical
features. In this respect, we introduce a stochastic model for
texture orientation fields stated as a 2D Orstein-Uhlenbeck
process. We show that this process resorts in the stationary
case to priors on orientation statistics. We exploit this model
to state image super-resolution as a geometry-driven vari-
ational minimization, where the geometry is sampled from
the proposed conditional 2D Orstein-Uhlenbeck process. We
demonstrate the relevance of this approach for real images as-
sociated with the remote sensing of ocean surface dynamics.

Index Terms— texture geometry, orientation field, stochas-
tic models, Ornstein-Uhlenbeck process

1. PROBLEM STATEMENT AND RELATED WORK

Texture analysis and modeling have been over the last decades
extremely active research topics. One may cite a variety of
models and approaches including Markov models, patch-
based/exemplar-based schemes, multiplicative cascades,
marginal-based models,... e.g. [4, 7, 11, 13]. Impressive
applications to texture synthesis have been reported, espe-
cially using example-based/patch-based techniques [7, 11].
More recently, image super-resolution has also emerged as
hot topic [3, 9, 10, 11, 12], including texture-based super-
resolution [3, 5, 10, 11].

A common feature shared by these models is that they
state some explicit (e.g., Markov, AR and cascade models)
or implicit (e.g., patch-based schemes) priors on a 2D scalar
field which represents the processed image. It is well-known
that geometry and contrast are potentially independent fea-
tures that may be addressed separately, in the sense that a
given texture geometry remains unchanged whatever the con-
trast function [15]. However to our knowledge none of these
models explicitly consider priors on the geometry of texture

Fig. 1. Geometry-driven super-resolution: we aim at sim-
ulating a high-resolution (HR) textured image given a low-
resolution (LR) image based on geometric priors. The LR
image is a downsampled version of the HR image.

samples. Multiplicative cascades as well as other fractal mod-
els [4] only partially address such geometrical priors as the
fractal dimension and/or multifractal spectrum typically de-
pends both on the image geometry and on the local contrast.

Our work aims at proposing such stochastic geometry-
driven priors for image modeling and synthesis. This ap-
proach is also motivated by studies which stress the relevance
of the geometrical component of visual textures for segmenta-
tion and recognition issues, for instance using point processes
[16] or texture orientation statistics [17]. In this work, we fur-
ther explore texture geometry and the definition of stochas-
tic geometry-driven image models. Regarding image level-
lines as the realizations of correlated random walks (Orstein-
Uhlenbeck process), image orientation fields are stated as re-
alizations of 2D Orstein-Uhlenbeck processes. This model
which embeds priors on orientation statistics is applied to im-
age super-resolution as illustrated in Fig.1. To our knowl-
edge, the proposed stochastic model is the first one to explic-
itly consider priors on the geometry of texture level-lines for
simulation and super-resolution applications.

2. STOCHASTIC GEOMETRY IN IMAGES

The geometry of grey-level or scalar images is fully charac-
terized by the geometry of their level-lines [15]. The associ-
ated contrast-invariant representation has been exploited in a
number of applications such as inpainting, coding as well as
texture recognition [1, 18]. For some classes of textured im-
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ages, such as image of turbulent dynamics, several theoretical
and experimental studies have specifically explored the sta-
tistical features which characterize the geometry of the image
level-lines [1, 2]. We here further explore the extent to which
image level-lines may be regarded as random walk samples.

2.1. Image level-lines as 2D random walks

We propose to model image level-lines as constant-velocity
2D random walks defined by a Orstein-Ulhenbeck process [6]:

dθ(t) = −γ (θ(t)− θ0) dt+ σdW (t) (1)

where θ(t) is the direction of the displacement at time t. θ0
is a directional bias. dW (t) is a 1D brownian process. γ and
σ are positive scalar parameters. The first term is a linear
reorientation model which states the directional drift of the
random walk. This reference direction is introduced here as
a constant for the sake of simplicity. In a second step, it may
vary to account for a coarse-scale geometric prior. It may also
be noted that other reorientation models, such as sinusoidal
ones, could be considered [6]. From (Eq.1) the sampling of
the random walk for a discretization time step ∆t follows as:

θ(t0 + k∆t) = α

[
θ0 +

σ

γ
∆tW̃ (t0 + k∆t)

]
+ (1− α)θ(t0 + (k − 1)∆t)

(2)

where t0 is the initial time, k the time index, α = 1 −
exp(−γ∆t) and W̃ a centered and normalized white noise.

The stationary statistics of the considered random walk
can be derived from the associated Fokker-Plank equation [6]
and this discretization scheme. The stationary distribution of
the orientation θ is a wrapped normal distribution with mean
θ0 and variance γ2σ2 and the stationary distribution of the
turning angle between time instants t and t + ∆t is a zero-
mean wrapped normal distribution with standard deviation
α∆tσ/γ. Hence, parameters γ and σ clearly control the ge-
ometry of the sampled trajectories.

2.2. Stochastic orientation field model

As image level-lines are not mutually independent, the
key idea of the proposed stochastic geometry-driven image
model is to state the image orientation field as a 2D Orstein-
Ulhenbeck process such that each level-line is characterized
by a random walk model similar to (Eq.1). Let us denote by
θ(p) the local orientation at pixel location p. We consider the
following 2D Orstein-Ulhenbeck process:

dθ(p) = −γ (θ(p)− θ0(p)) dp+ σdW (p) (3)

where W is 2D Brownian surface. Parameters γ and σ have
the same interpretation as in Eq. 1. It should be noted that
this model guarantees that the orientation along the level-line,

which corresponds to the projection of Eq.(3) onto the tan-
gent (cos θ(t) sin θ(t))t to the image level-line at point p,
verifies a stochastic equation similar to Eq. 1. This property
relates the geometric features of the level-lines to the orienta-
tion statistics of the random field θ.

2.3. Stochastic geometry-driven texture model

Based on the stochastic orientation field model, we define a
geometry-driven texture model such that texture samples Ĩ
are sampled according to: dθ(p) = −γ (θ(p)− θ0(p)) dp+ σdW (p)

〈nĨ(p), uθ(p)〉 = 0, ∀p
(4)

where nĨ(p) = ∇Ĩ(p)/‖∇Ĩ(p)‖ is the normal to the level-
line of image Ĩ at point p and uθ(p) the unit direction vector
(cos θ(t) sin θ(t))t. This system is turned into the combi-
nation of the sampling of the orientation field and of a varia-
tional minimization:

dθ(p) = −γ (θ(p)− θ0(p)) dp+ σdW (p)

Ĩ = arg min
I

∫
‖ 〈∇I(p), uθ(p)〉 ‖dp

(5)

The stochastic simulation of images involves two steps:

1. the generation of a sample of the orientation field model
θ: the integration of the stochastic differential equation
(5) proceeds according to a lexicographical scan of the
image. At each point, we randomly select the horizon-
tal or vertical direction and consider the integration (2)
according to the selected direction.

2. the computation of the image sample Ĩ from the min-
imization of the proposed variational cost: We solve
for this minimization using an iterated reweighted least
square (IRLS) scheme applied to a discretized version
of the variational cost from an initial image Ĩ0. This
IRLS scheme is similar to the one detailed in [8].

2.4. Model simulations

We illustrate simulations for two different parameter settings
for γ and σ (Fig.2) using a constant reference orientation
θ0 = π/2 and the same initialization Ĩ0 (Fig.2, upper-left).
Whereas along-level-line orientation statistics are similar
(Fig.2, left row, bottom panel), the global geometric patterns
strongly differ. It might be noted that the sampled images
correctly match to the theoretical stationary statistics.

A textured image typically involves these different types
of geometries, that is to say both areas depicting regular
level-lines and areas involving irregular ones. Varying spa-
tially model parameters σ and γ, our model can represent and
model the geometric variabilities of a textured image with
respect to a reference geometry θ0.
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Fig. 2. Simulations of the stochastic image model (Eq.5) in
the stationary case: first row, considered initialisation (left),
simulation for parameter setting A (center), simulation for
parameter setting B (right); second row, orientation varibility
w.r.t. the directional drift (left) and along-level-line turning
angle statistics (right) for parameter setting A; third row, the
same as the second row for parameter setting B. Observed ori-
entation statistics (blue,-) are compared to theoretical station-
ary statistics (black,-). The considered parameter settings are
as follows: γ = 0.6 and σ = 0.3 for case A, and γ = 5e− 3
and σ = 0.4 for case B.

3. APPLICATION TO IMAGE SUPER-RESOLUTION

As an application of the proposed stochastic image model,
we consider the super-resolution of textured images. We aim
at simulating a high-resolution textured image given a low-
resolution sample (Fig.1). Our specific interest is in the state-
ment of a geometry-driven prior to constrain the geometry of
the high-resolution image conditionally to the low-resolution
observation. We first describe the proposed super-resolution
model and the associated numerical implementation. In a sec-
ond step we present experiments on real images.

3.1. Stochastic super-resolution model

To state our model, we introduce the following notations. Let
IHR be a N ×M high-resolution scalar image and IHR its
low-resolution counterpart. We assume that ILR is a Kth-
order subsampled version of IHR, where P is the projection
operator of the subsampling process: ILR = P [IHR] and by
P−1 the interpolation operator from a N/K ×M/K resolu-
tion to a N ×M one. P satisfies an orthogonality constraint:

ILR = P
[
P−1 [ILR]

]
and P [IHR − P [IHR]] = 0 (6)

Formally the super-resolution issue is stated as the sampling
of a stochastic model conditionally to a low-resolution obser-
vation ILR:

sample I|ILR subject to ILR = P [I] (7)

The stochastic model proposed in the previous section (Eq.5)
naturally applies to consider geometry-driven priors in the
definition of the conditional distribution P (I|ILR) and the
geometry-driven super-resolution model resorts to:

dθ(p) = −γ(p) (θ(p)− θLR(p)) dp+ σ(p)dW (p)

Ĩ = arg min
I

∫
‖ 〈∇I(p), uθ(p)〉 ‖dp

Subject to ILR = P
[
Ĩ
]

(8)
where W is a Brownian surface, θLR the orientation field of
the tangent to the level-lines, i.e (− sin θLR cos θLR)t =
∇ILR/‖∇ILR‖ with∇ILR the gradient of image ILR.

This stochastic super-resolution clearly constrains the ge-
ometry of the high-resolution sample Ĩ from the geometry
of the low-resolution image through orientation field θLR.
Model parameters γ and σ may here spatially vary to account
for the non-stationarity of the geometry of the image. These
parameter fields are defined according to the following state-
ment: level-lines corresponding to image contours typically
depict greater geometrical regularity than level-lines in flat
image regions. We then use the magnitude of the image gra-
dient as a local cue on the regularity of the level-lines, and we
parameterize fields γ and σ as follows:

γ(p) = γ0‖∇ILR(p)‖ν

σ(p) = σ0‖∇ILR(p)‖−β
(9)

where γ0, σ0, ν and β are positive scalar parameters. The
greater the magnitude of the low-resolution gradient, the
greater parameter γ, such that the re-orientation term in the
local variations of θ (Eq.2) becomes stricter. By contrast,
the lower the magnitude of the low-resolution gradient, the
greater parameter σ and the relative weight of the Brownian
surface. Hence for very large gradients, the local orienta-
tion is constrained to that of the low-resolution observation,
whereas in uniform areas only the Brownian process, inde-
pendent on the low-resolution condition, is active.

3.2. Numerical resolution

The proposed stochastic super-resolution model involves two
steps: the generation of a sample of the orientation field
model and the resolution of the geometry-driven variational
minimization. The first step is similar to the procedure de-
scribed previously for the model with constant parameters
(Eq.5). Regarding the variational minimization, we pro-
ceed as follows to fulfill projection constraint ILR = P [I].
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Fig. 3. Stochastic geometry-driven super-resolution of real images: from left to right, simulated high-resolution image given
the low-resolution image depicted in Fig.1, Fourier spectrum of the simulated image (red,-) compared to the Fourier spectra
of the real high-resolution (black, -) and low-resolution (black,–) images depicted in Fig.1, multifractal spectrum of the the
simulated image (red,-) compared to the multifractal spectra compared to the Fourier spectra of the real high-resolution (black,
-) and low-resolution (black,–) images, comparison of the distribution of fine-scale details I − ILR of the simulated image (red,
-) to the distribution of fine-scale details IHR − ILR. The latter also depicts a normal distribution with the same variance as
I − ILR to check for the non-gausssianity of the fine-scale details.

The considered IRLS scheme iteratively updates the solu-
tion from the initialization Ĩ(0 = P−1 [ILR]. Let us de-
note by δĨ(k) the incremental update at iteration ksuch that
Ĩ(k+1) = Ĩ(k) + δĨ(k) with Ĩ(k) the solution at iteration k.
To fulfiil the projection constraint, we exploit the orthogo-
nality of projection operator P and we modify the update to
Ĩ(k+1) = Ĩ(k) + δĨ(k) − PδĨ(k) such that Ĩ(k+1) verifies
P Ĩ(k+1) = ILR.

In our implementation, we consider power-two subsam-
pling factor K = 2L and we use 2D discrete wavelet trans-
forms [14] such that projection operator P satisfies (Eq.6).
The projection constraint resorts to keeping only the detail
coefficients of the discrete transform of the updated image
Ĩ(k+1) up to level L while approximation coefficients at level
L are given by those of the low-resolution observation ILR.

3.3. Experiments

In our experiments, we consider an application to the remote
sensing of ocean surface dynamics, especially satellite-based
sea surface temperature images (Fig.3). SST images are also
known to be intimately linked to the turbulent ocean dynamics
and involve complex multiscale cascades as well as geometri-
cal properties [1, 2]. Whereas high-resolution satellite obser-
vations (e.g., infrared sensor) are more affected by the cloud
cover as well as to rain effects, low-resolution observations
(e.g., micro-wave sensor) present lower rate of missing data.
The proposed super-resolution algorithms are then of key in-
terest to address missing data interpolation in high-resolution
images given the associated low-resolution observation.

The reported example (Fig.3) illustrates the relevance of
the proposed stochastic geometry-driven model to generate a
high-resolution image visually similar to the real image, espe-
cially in terms of geometrical features. The parameter setting
is the following: ν = 0.54, β = 0.13, γ0 = 2.14, σ0 = 0.14.

Our super-resolution scheme also recovers a correct decay in
the Fourier spectrum as well as a multifractal spectrum very
similar to that of the real image. It should be noted that no
explicit constraint is set in our model on the Fourier and mul-
tifractal spectra. The good match with the real image is inter-
preted as a consequence of the multiscale cascades implicitly
encoded by the considered stochastic model. We also report
the comparison of the distributions of the fine-scale details
of the simulation vs. the real image. They clearly outline
the non-gaussianity of these details between the two analysis
scales for the real image. This property is a widely acknowl-
edged feature of real images [4] and further stresses the the
relevance of the proposed stochastic geometry-driven image
model to generate non-gaussian surfaces.

4. CONCLUSION

We have presented a novel stochastic image model. Contrary
to most probabilistic models of scalar images, the prior is not
explicitly set on image values nor responses to filter banks
[4, 7, 13], but on the orientation field constraining the geom-
etry of image level-lines. It then allows us to control geomet-
rical features, in terms of local regularity of the level-lines.
The stochastic orientation field model is stated as 2D Orstein-
Uhlenbeck process. This model naturally applies to texture
super-resolution. The simulation of real high-resolution im-
ages of the sea surface temperature outline the relevance of
the proposed model.

Our future work will further explore the proposed frame-
work. Regarding theoretical aspects, we will focus on the
analysis of the stationary distribution of the considered
Orstein-Uhlenbeck process as well as extensions to fractional
Brownian surfaces. Besides applications to the texture-based
interpolation of mission data and spatio-temporal extensions
of the proposed model are also of interest.
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