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ABSTRACT

In this paper, we propose a novel method to generate the hal-
lucinated multi-views of faces using the sparse-representation
model. In order to render a faithful virtual view, we introduce
centralized constraints into a variation framework for opti-
mization. The constraints are formulated based on an attempt
to minimize the difference between the sparse-coding coeffi-
cients derived for two distinct views. In our algorithm, sift
optical-flow method is employed to formulate the constraints.
An input face is firstly sparsely coded over a given dictionary,
and then the sparse-coding coefficients for the input face are
refined through an optimization framework with the central-
ized constraints. Intensive experimental results demonstrate
that our proposed method can perform well in terms of both
reconstruction accuracy and visual quality..

Index Terms— Multi-view, Face Hallucination, Sparse
Representation

1. INTRODUCTION

Multi-view hallucination (MVH) aims to reconstruct high-
resolution (HR) facial images of a certain pose based on low-
resolution (LR) faces in different views. In real life, facial
images are usually captured by cameras at different view-
points, and exhibit large variations. Hence, this technique can
be adopted as the pre-processing step to pose-invariant face
recognition, which needs to generate faces of different views
to improve the recognition rate. In recent years, many related
algorithms have been proposed based on 3D human face mod-
els. Their underlying assumption is that a novel view can be
generated by rotating a 3D model reconstructed at a certain
angle, as illustrated in [1, 2, 3, 4]. As the input images used
are basically arrays of numbers or pixels, and sets of object
classes in the image space cannot be defined as vectors, 3D-
based algorithms are therefore employed. This approach sep-
arates faces into shape and texture vectors, which encode the
differences in terms of the intensities and the displacement
of each point with respect to those reference images selected.
Based on the shape and texture vectors generated, pixel-wise
correspondence is expected to be established between faces
captured at different viewpoints. This is because the compo-
nents at the same position in a vector space can refer to the

same types of features [5]. Hence, a 3D-based framework can
be characterized as the process for deriving the correspon-
dence between the novel features to be reconstructed and fea-
tures extracted in the training set. However, the reconstruction
performance of the 3-D based algorithms is highly dependent
on the estimation of the pixel-to-pixel correspondence, which
is still an open issue. Moreover, the construction of a 3D
human face model and the generation of texture and shape
vectors greatly increase the computational complexity.

2. RELATED WORK

Unlike the 3D-based framework, another approach recon-
structs a virtual view in the 2D domain via learning methods
without the use of any 3D human face model. In [6], Jia and
Gong proposed a two-stage patch-based learning algorithm,
which employs a hierarchical tensor space to represent facial
images across multiple modalities. [7] applied locally linear
regression (LLR) to overlapped local patches between faces
with different views. [8] employed a similar method, which
directly applied the LLR method to the patches at the same
positions in faces with different views. Compared with the
3D-based methods, the 2D domain approaches can greatly re-
duce computational complexity and render a relatively good
performance. However, when the pose needs to be recon-
structed across a large change in viewpoint with respect to
the input pose, the correspondence relation established based
on patches becomes weak, and thus the reconstruction perfor-
mance will degrade greatly.

In order to overcome the inherent weakness of patch-
based method, we propose a 2D domain-based learning
method which can deal with MVH when the change of view-
point is large. The contributions of this paper are twofold.
Firstly, we employ sparse representation instead of patches
to encode the information on facial images. The aim of
sparse representation is often to reveal certain structures of
a signal and to represent these structures in a compact and
sparse representation [9, 10], which is suitable to code the
intrinsic features. Moreover, compared with those previous
works which apply subspace analysis methods to derive the
weights, sparse representation has shown its robustness in
information extraction when the correspondence relationship
is relatively weak [11, 12]. Secondly, we introduce a novel
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framework based on the sift optical-flow method to reduce
the differences between the sparse-coding coefficients (SPC)
used to encode the input facial image and the unknown target
HR face. Different from previous methods which consider
the SPC for both the input face and the target face to be
similar, our method takes their difference into consideration
and embed a new term in the objective function to iteratively
refine the initial estimated results. Moreover, we introduce
the warped images which are generated via sift optical flow,
and we further employ the warped samples to refine the SPC.

3. PROPOSED METHOD

3.1. Linear mapping relationship

Based on the assumption that the 3D face surface is Lam-
bertian [13, 14], we denote the intensity function at the point
(x, y, z) in the 3D space as Γ(x, y, z). The 2D images with
two different view indices (denoted as s and f ) can be gen-
erated through the following equations:

Is = PsΓ, (1)

If = PfΓ, (2)

where P represents the orthographic projection matrix which
projects the 3D prototype to the 2D domain, and indices s
and f represent the corresponding poses in the 2D domain,
respectively.

As illustrated in [7], a linear mapping relationship can be
established between Is and If as follows:

Is = (PsPf
T + Psκ)If , (3)

where κ is the matrix that characterizes the operation to esti-
mate the missing points from its 3D prototype. Denote C =
PsPf

T + Psκ, Eq. 3 becomes

Is = CIf . (4)

The matrix C can be regarded as the linear mapping re-
lationship between faces in different poses. When the input
is of low resolution with respect to the target image, we in-
terpolate the input face to the same size as the target one and
denote the interpolated face as Is.

3.2. Generation of SPC

As stated previously, the linear relationship is difficult to es-
timate because it depends on individual geometry. Therefore,
it is desirable that the HR faces can be generated without re-
quiring the estimation of the linear mapping relationship. In
our method, dictionaries are trained based on training faces
at different views. With the dictionaries, the relation between
the SPC of the same person at different views are learned.
Denoting If as the target face, we have Iif = RiIf , which

represents an image patch of size s1 × s2 at location i. Ri is
the transform matrix to extract patch Iif from If at location
i. Based on the dictionary, defined as Φf ∈ RS×M , where
S = s1 × s2 and M is the number of patches extracted from
a facial image, the patch at location i can be sparsely rep-
resented as Iif ≈ Φfαi via the sparse-coding algorithm [15].
Patches are of a small size, and are selected by one-pixel shift-
ing each time to avoid over-complete.

We need to estimate the SPC αf so that we can reconstruct
a HR faces in frontal view. Based on the interpolated input
face Is and the linear mapping relationship in Eq. 4, we can
approximately represent Is as Is = Ĉ · If . The SPC of Is can
be obtained by solving the following equation:

αs = arg min
a
{‖Is − C · (Φf ◦ α)‖22 + λ‖α‖1}. (5)

The initially estimated results can be obtained by Îf =
Φf ◦ αs. It is expected that the difference between αs and
αf should be minimized. We define the difference between
αs and αf as gα = αs − αf , and thus we want to minmize
the value of gα. First, we express αf based on faces with the
view index f ,

αf = arg min
a
{‖If − Φf ◦ α‖22 + λ‖α‖1}. (6)

Given the learned dictionary Φf , the difference between the
two sets of SPC will be small if the training facial images are
very similar to the target view image If . Moreover, unlike
natural scene images, facial images possess strong structural
similarity, and thus similar samples can effectively infer the
information for the target SPC αf . If we can select samples
which are the most similar to the input face, then we can de-
rive the SPC of the selected samples and employ these SPC
to generate a reasonable estimation of αf . Hence, we can in-
corporate l1norm ga in Eq. 5. Denote the estimation of αf
based on the selected samples as α̂f , the optimization frame-
work becomes Eq. 7, where ◦ denotes synthesis opertaion.

αs = arg min
a
{‖Is−C ·(Φf ◦α)‖22+λ1‖α‖1+λ2‖α−α̂f‖1}.

(7)

3.3. Evaluation of of α̂f

As similar faces possess similar sparse-coding coefficients
with a given dictionary, we use the input face with its
view index denoted as s to search a training set for K
similar samples, based on Principal Component Analysis
(PCA), and denote the space containing the selected faces as
S = {Is,1, Is,2 · · · Is,K}. Then, the corresponding samples
with the same view as the target face are identified, and de-
note the corresponding space as F = {If,1, If,2 · · · If,K}.
Although using the similar images can help to make a good
estimation, the sub-pixel misalignment will still affect the
performance. Hence, in our method, we employ the optical-
flow method to warp the similar faces selected in order to
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reduce the sub-pixel misalignment. The optical-flow method
used in our algorithm is based on the SIFT flow framework
in [16]. Given the samples selected with respect to the input
face Is , we derive the relative displacement (u, v) for each
selected sample by optimizing the following equation:

Es,j = arg min
u,v
‖Is,i(x+ ui, y + vi)− Is(x, y)‖2

i = 1, 2 · · ·K (8)

In our method, we predict α̂f using a two-stage coarse-
to-fine approach. Initially, given the selected samples in
view s, we derive the spatial displacement with respect to
the input face. Then, we employ the relative spatial dis-
placement derived based on view index s to initially esti-
amte the corresponding spatial displacement for the selected
counterparts with view index f . Hence, we warp the sam-
ples in space F based on the displacement vector (u, v)
derived in Eq. 8, and the warped space is denoted as W =
{W (If,1u1, v1),W (If,2, u2, v2) · · ·W (If,K , uK , vK)}. Hence,
we minmize the warping error that can be expressed as fol-
lows:

Ef,i = ‖W (If,i, ui, vi)− Îf‖2. (9)

where Îf is initially set as = Φfαs, and αs is the SPC of the
input face.

However, minimizing Eq. 9 only will easily cause overfit
as no regularization terms are introduced. On the other hand,
we expect that the estimation should be more dependent on
the sample which has small warping errors. Hence, in the
second stage, we define a penalty factor used to balance the
weights that each warped sample contributes to the target face
as follows:

χi =
E−β
f,i∑

i (Ei,f + ε)
−β , (10)

where χi represents the penalty factor assigned to the ith

selected frontal sample, β controls the penalty power, and
ε is a small value that makes the denominator not be zero.
We define the penalty-factor matrix in the form of Υ =
diag(χ1, χ2 · · ·χK) and denote the concatenation of the SPC
αf,i asαrf = {αf,1, αf,2 · · ·αf,K}T , whereW (If,i, ui, vi) =
Φf ◦ αf,i and the concatenation of K numbers of αs is de-
noted as αrs = {αs,1, αs,2 · · ·αs,K}T . The weights for the
SPC of each warped sample contributed to the target face
are treated according to the penalty factor derived in Eq. 10.
Inspired by our previous methods [17, 18], we characterize
the distribution of the weights with Gaussian Mixture Model
(GMM) as follows:

wf ∝
1

Z
exp{− 1

2σ2
(αrf − αrs)T ·Υ · (αrf − αrs)}, (11)

where wf denotes the weights that SPC of warped selected
samples contributed to the target face, Z is a normalization

Algorithm 1. Iterative reconstruction
Initialization: α̂f = 0 and Îf = Φf ◦ αs
for i = 1, 2 · · · iter do
1. Use Eq. 9 to update the warping errors for each warped sample.
2. Use Eq. 10 and 12 to update the weights of SPC.
3. Use Eq. 13 to calculate α̂f .
4. Solve the optimization equation Eq. 14 to update the value of α(i)

s

5. Update the value of Îf = Φf ◦ α(i)
s

end

Fig. 1. The iterative-reconstruction algorithm.

constant, and σ2 evaluates the variance of the assumed esti-
mation error. The weights wf,i for the SPC of the ith warped
sample can be calculated as:

wf,i =
1

Z
χi exp{− 1

2σ2
(αrf − αrs)T (αrf − αrs)}. (12)

Given the weights of SPC of each sample, the estimated SPC
âf can be estimated.

âf =

K∑
i=1

wf,iαf,i. (13)

In our method, we generate the final results based on an iter-
ative reconstruction. Denoting i as the iterative index, Eq. 7
can be rewritten as:

α(i)
s = arg min

a
{‖Is−C·(Φf◦α)‖22+λ1‖α‖1+λ2‖α−α̂(i−1)

f ‖1},
(14)

where initially α̂0
f = 0. Note that αs, used in Eq. 9 and 12,

needs to be updated according to Eq. 14. The main procedures
of this iterative reconstruction algorithm are summarized in
Fig. 1.

In our method, we adopt the local dictionary learning
method for the patches at the same position, and we apply
PCA to each cluster which contains patches at the same posi-
tions. As faces possess strong structural similarity, and thus
patches at the same position can refer to the same type of
facial features. Moreover, as indicated in [19, 20, 21], local
cluster-based dictionary is robust in preserving local structure
information.

4. EXPERIMENTS

In the experiments, five datasets of face images with different
poses are used, and each of the datasets contains 68 samples
selected from the CMU PIE [22] database. The poses of the
five datasets are ±45◦, ±22.5◦, and frontal view 0◦, where +
denotes the right-side view and − denotes the left-side view.
The facial images are cropped based on the coordinates of the
two eyes, normalized to a size of 100 × 100 pixels using the
method in [23]. The down-sampling factor is 4 for the input
facial images, i.e. the input face is of 25× 25.
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First, in order to verify the robustness of sparse repre-
sentation, we compare our algorithm with two patch-based
methods, namely the tenor patch-based method [6] and the
LLR based method [7]. The reconstructed HR frontal faces
are shown in Fig. 2. based on distinct view points (i.e. −45◦,
−22.5◦, 22.5◦, 45◦). To evaluate the respective methods
quantitatively, the mean squared error (MSE) and the struc-
tural similarity index (SSIM) [24] are measured and tabulated
in Tables 1 and 2 .

Second, to evaluate the effectiveness of the regularization
term ‖α− α̂f‖1 used and the sift optical-flow method applied
in our algorithm, we compare the results obtained by refined
SPC with the results by regarding αs = αf . We select three
representative samples (i.e. a male, a female and a man with
beard) in the training set to demonstrate the performance of
sparse-coding refinement, and the results are shown in Fig. 3.

Methods L45 L22.5 R22.5 R45
Jia[6] 454.01 412.85 411.98 471.00

Chai[7] 420.84 322.31 321.74 416.44
Our 347.91 303.16 299.29 345.33

Table 1. The MSE of the respective methods when the input
face images are of different poses.

Methods L45 L22.5 R22.5 R45
Jia[6] 0.55 0.56 0.56 0.54

Chai[7] 0.59 0.62 0.62 0.59
Our 0.65 0.67 0.67 0.65

Table 2. The SSIM of the respective methods when the input
face images are of different poses.
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6. CONCLUSIONS

In this paper, we have proposed a novel HR virtual-view gen-
eration method for face images. Our method uses sparse rep-
resentation to code the information in a training set. The
optical-flow method with a penalty function has been em-
ployed to refine the sparse-coding coefficients used to recon-
struct the target images. Our method works well even when
the change of viewpoint is large, and it can effectively over-
come the difficulty in establishing the correspondence across
large viewpoint changes, which has been a problem in most
of the previous work.

Fig. 2. Virtual facial images generated using different algo-
rithms with the poses at −45◦, −22.5◦, 22.5◦,and 45◦: (a)
the input LR faces, (b) Jia’s method [6], (c) Chai’s method
[7], (d) our proposed method, and (e) the target HR images.

Fig. 3. Results based on different SPC generation schemes
with the given viewpoint at 45◦: (a) the input faces, (b) the
results generated by taking αs = αf , (c) the results generated
by taking the SPC refinement, and (d) the ground-true frontal-
view face images.
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