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ABSTRACT 
 

By incorporating the priors of image positions, position-patch 

based face hallucination methods can produce high-quality results 

and save computation time. These methods represent the test image 

patch as a linear combination of the same position patches in a 

training dictionary, and the key issue is how to obtain the optimal 

coefficients. Due to stability and accuracy issues, methods based 

on least square estimation or sparse representation (SR) proposed 

so far are not satisfactory. In this paper, we improve existing SR 

methods by exploiting similarity between the test and training 

patches. In particular, we impose a similarity constraint (in terms 

of the distance between the test patch and bases in the dictionary) 

on the 1 minimization regularization term and obtain the coeffi-

cients by solving a weighted SR problem. We also provide a new 

prospective on weighted SR and investigate its robustness to illu-

mination variations. Experiments on commonly used database 

demonstrate that our method outperforms state of the art. 

 

Index Terms—Super-resolution, face hallucination, weighted 

sparse representation, position patches. 

 

1. INTRODUCTION 
 

Face super-resolution, or face hallucination, refers to the technique 

of estimating a high-resolution (HR) face image from low-

resolution (LR) face image sequences or a single LR one. Due to 

constrained imaging conditions in many scenarios, it is hard to 

capture HR face images, and thus face hallucination is extensively 

used for pre- and/or post-processing in video applications, such as 

video surveillance and video retrieval. A large number of theoreti-

cal and applied works on face hallucination have been carried out. 

According to [1], existing methods can be classified into three 

categories: interpolation, reconstruction-based methods, and ma-

chine learning methods. Among them, learning based methods 

have received much attention because they can achieve high mag-

nifying factors, however, they typically require databases of mil-

lions of high- and low-resolution patch pairs, and are therefore 

computationally intensive.  

Following locally linear embedding (LLE) [2] from manifold 

learning, Chang et al. assumed similarity between two manifolds in 

the HR and  LR patch spaces and proposed a neighbor embedding 

(NE) based face hallucination method [3] using a fixed number of 

neighbors for reconstruction. Due to under- or over-fitting, this 

method usually results in blurring. To alleviate this problem, Yang 

et al. [4] employed a sparse coding method to adaptively choose the 

most relevant neighbors for reconstruction. It should be noted that 

unlike generic image super-resolution, face hallucination is a spe-

cific problem, and therefore image priors can be incorporated to 

boost its performance. Following this idea, Ma et al. [5] took ad-

vantage of the prior of face positions and introduced a position-

patch based method to hallucinate the HR face image using the 

same position image patches of all training images. This way, it 

saves computation time and gives relatively good results. However, 

when the number of training patches is much larger than the dimen-

sion of the patch, least square estimation (LSE) employed to obtain 

reconstruction coefficients is actually under determined and gener-

ates unstable solutions. It is known that 1 -minimization-based SR 

can provide stable solutions [6]. Recently, Jung et al. [7] formulat-

ed a SR version of the position-patch based method and used con-

vex optimization to overcome the problems of LSE. Nevertheless, 

SR based methods may select very distinct patches that are far from 

the input patch to favor sparsity and thus result in dissimilarity in 

terms of the Euclidean distance. 

Since the sparse representation theory was established in [6], 

several variants have been successively developed, namely, 

weighted 1 minimization [8-9], SR with prior support information 

[10], locality-constrained SR [11,13], and structured sparsity [12]. 

These methods aim at exploiting the a priori information about the 

support of coding coefficients. Candès et al. [8] designed an itera-

tive reweighted formulation of 1 minimization to more democrati-

cally penalize nonzero coefficients. Friedlander et al. [10] theoreti-

cally proved that if the partial support estimate is at least 50% accu-

rate, then weighted 1  minimization outperforms the standard one 

in terms of accuracy, stability, and robustness. In practical applica-

tions, weighted SR has shown superiority over conventional SR 

methods for pattern classification applications such as image classi-

fication [13-14] and  face recognition [15].  

Inspired by the above works on reweighted 1 minimization, in 

this paper we extend position-patch based face hallucination from 

SR [7] to weighted sparse representation (WSR) by enforcing a 

similarity-inducing constraint on the coding coefficients. By incor-

porating both sparsity and distance support information, WSR can 

better characterize the similarity between the test sample and train-

ing samples and thus give more accurate and robust solutions. Alt-

hough weighted 1 -minimization-based sparse representation has 

been previously studied in [8-15], we are the first to introduce it to 

the face hallucination problem. Different from [14,15], we study 

the weighted 1 minimization problem from a probability theory 
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(rather than a penalty) prospective, which can be justified to be 

preferable theoretically. Furthermore, our employed similarity met-

ric is capable of handling possible illumination mismatch among 

the input and training images. Experiments on commonly used 

database confirm superiority of our proposed WSR method. 

 

2. FORMULATIONS 
 

Let X be test face image, Y the LR training dictionary whose col-

umn vector consists of LR face image m
Y , 1,...,m M , where 

M is the number of training images. In position-patch based face 

hallucination [5], each patch ( , )X i j

 

located at position ( , )i j  in 

the LR face image can be represented as 

( , ) ( , ) ( , )X i j Y i j w i j  ,                                 (1) 

where ( , )w i j  represents the linear reconstruction coefficient vec-

tor and ( , )Y i j  are the same position patches in LR training image 

dictionary. 

In [7]，the reconstruction weights of the input image patch are 

computed by the following 1 -norm sparse representation: 

1
( , )

min || ( , ) ||
w i j

w i j , 2

2. . || ( , ) ( , ) ( , ) ||s t X i j Y i j w i j    ,       (2)
 

where 0   is the allowed error tolerance. After obtaining the 

reconstruction coefficients by training LR face images, based on 

the assumption that LR and HR patch share similar topological 

manifold structure [3], the coefficients are mapped to HR directly 

to synthesize the HR face patch ( , )
H

X i j through the corresponding 

HR training dictionary ( , )HY i j  by  

( , ) ( , ) ( , )H HX i j Y i j w i j  .                                (3) 

Consequently, the target HR image HX is reconstructed by combin-

ing these hallucinated HR patches. 

 

3. WEIGHTED SPARSE REPRESENTATION 
 

For face hallucination based on LR/HR training dictionary pairs, 

similarity in terms of the Euclidean distance should be more em-

phasized than correlation [2,11,13]. However, neither 1 -norm nor 

2 -norm optimization problem explicitly involves any similarity 

measure. For example, the commonly used iterative greedy algo-

rithm for an 1 -norm optimization problem finds the index of the 

single dictionary element that best approximates the current im-

age/residual signal by maximizing the cross-correlation [16]. In 

addition, the analytical solution for the 2 -norm optimization prob-

lem also contains a correlation term [3,13]. Therefore , SR cannot 

guarantee consistency between coefficient weights and similarity 

in terms of the Euclidean distance.  

To illustrate this issue more clearly, we plot the coding coef-

ficients generated by SR according to the sorted distances in as-

cending order in Fig. 1.  

It is seen that, as the distance increases (or similarity decreas-

es), the coefficient magnitudes exhibit an overall decaying trend 

but leave many outliers (e.g., those marked in red boxes). This is 

due to the fact that the SR optimization process only accounts for 

the correlation but ignores pairwise similarity. Consequently, 

sparse coding may reconstruct a test patch by training patches that 

are far from the test sample and thus produce unstable hallucinated 

results.  

 
Fig. 1.  Sparse coding coefficients vs. Euclidean distances. 

 

3.1   Proposed Method 
 

To overcome the drawbacks of sparse coding, we expect the coef-

ficient magnitudes to be proportional to similarity. From the pro-

spective of probability instead of penalty [13-15], we seek the 

maximum probability that makes the bases involving significant 

similarity to retain larger coefficients by 
* argmax ( | ), , , ,i j i j i j i j

w

w P w w S S w w w S S S      ,
     

(4) 

where w denotes coefficient vector, and S denotes similarity vector 

which quantitatively expresses the degree of pairwise similarity 

between the input test patch and each individuals in training dic-

tionary. In statistics, it is a fundamental problem to determine 

whether two curves, referred as coefficient curve and similarity 

curve in this paper, share the same variation tendency [17]. In 

practice, for the sake of simplicity, we maximize the correlation 

between the coefficient and similarity vectors to obtain 
* arg max( | |)

w

w S w , where | |w calculates element wise absolute 

value of the vector w (i.e., magnitude ), " "  is the correlation oper-

ator. If we use the Euclidean distance d to measure similarity 

1 /S d , then * arg min( | |)
w

w d w , which can be conveniently incor-

porated into 1  minimization regularization in (2) because it in-

volves minimization rather than maximization. 

Based on the above discussion, our weighted 1 -norm regu-

larization is formulated as  

 2

2 1
( , )

( , ) argmin || ( , ) ( , ) ( , ) || || ( , ) ( , ) ||
w i j

w i j X i j Y i j w i j d i j w i j    ,

    

(5) 

where   is a regularization parameter balancing the contribution of 

the reconstruction error and sparsity of the solution, ( , )d i j  denotes 

the Euclidean distance vector whose entry ( , )md i j is calculated as  

2( , ) || ( , ) ( , ) ||m

md i j X i j Y i j  .
                         

(6) 

If we use D to denote the diagonal matrix with diagonal elements 

( , )d i j , (5) can be reformulated as 

 2

2 1
( , )

( , ) argmin || ( , ) ( , ) ( , ) || || ( , ) ||
w i j

w i j X i j Y i j w i j Dw i j    .

            

(7) 

By substituting '( , ) ( , )w i j Dw i j , 1 '( , ) ( , )w i j D w i j , (7) can be 

rewritten as 

 
'

1 ' 2 '

2 1
( , )

( , ) argmin || ( , ) ( , ) ( , ) || || ( , ) ||
w i j

w i j X i j Y i j D w i j w i j    ,  (8) 

which can be solved using the SLEP toolbox in [18]. 

 

3.2  Robustness to Illumination Variations  
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WSR is proposed to enhance the consistency between coefficient 

and similarity. However, when the illumination level of test image 

deviates from that of training images significantly, this enhance-

ment effect is not yet guaranteed. Fig. 2 shows the PSNR of SR as 

well as WSR for test images with reduced illumination and raised 

illumination, respectively. It is unexpectedly observed that the 

PSNR of WSR method is no higher than that of SR any more, es-

pecially for reduced illumination case. This phenomenon is at-

tributed to the fact that the standard Euclidean distance cannot 

accurately measure  similarity when the image intensity values do 

not belong to the same range. So, WSR should account for the 

illumination intensity variations among test image and training 

images. Accordingly, we carry out an illumination alignment oper-

ation together with the Euclidean distance computation (so-called 

illumination compensation , IC), and thereby form a weighted Eu-

clidean distance metric which is formulated as 

2

)
( , ) || ( , ) ( , ) ||

m T m
m

mT

Y Y
g d i j gX i j Y i j

X X
  

 （
， .             (9) 

As shown in the third column in Fig. 2 for either (a) or (b) , 

WSR employing IC (denoted as IC+WSR in Fig. 2) overtakes SR 

once again, which manifests that our suggested distance metric 

benefits to WSR in presence of illumination variations. Thus, we 

use this metric in the subsequent experiments. 

 

 
(a) Reduced illumination.     (b) Raised illumination. 

Fig. 2. Results on illumination compensation. 

 

4. EXPERIMENTS AND RESULTS 
 

To verify the superiority of our method, experiments were per-

formed on FEI face database [19]. It contains 400 images from 200 

subjects (100 men and 100 women). Among them, 360 images 

were randomly chosen as the training set, and the rest 40 were used 

for testing. Therefore, all the test images were absent completely in 

the training set. The LR images were obtained by smoothing and 

down-sampling by a factor of 4. The HR patch size was 12x12 and 

the overlap between neighbor patches was 4 pixels, while the cor-

responding LR patch size was 3x3 with an overlap of 1 pixel. 

Since it is already confirmed in [7] that both NE [3] and LSE [5] 

methods are inferior to SR method, we only compare our method 

with SR. Subjective hallucination results and the objective metrics, 

i.e., PSNR and SSIM index, are demonstrated. Both the parameters 

of the balancing factor   in WSR and the error tolerance  in SR 

are tuned to their best possible results. 

 

4.1  Consistency Between Magnitude and Similarity 
 

The similarity-inducing weighting is designed to seek the most 

similar variation tendency for similarity and magnitude curves, 

which can be converted to a maximum cross-correlation problem. 

To validate this mechanism, we conducted a consistency test, in 

which the similarity is expressed as inverse distance.  As shown in 

Fig.3 (b), the coefficient curve on WSR coincides with the simi-

larity curve perfectly. In contrast, the curves on SR in Fig.3 (a) 

perform less similar trend as the large coefficients hardly corre-

spond to the large similarity values. These results confirm that the 

idea of pursuing the most similar variation tendency for two  

curves really works. 

 

 
(a) SR                                 (b)  WSR 

Fig. 3. Plots of  similarity and coefficient magnitude. 

 

4.2 Comparison of Objective and Subjective Results 
 

As shown in Fig. 4, both PSNR and SSIM values of our WSR are 

much higher than those of SR. For position-patch based face hallu-

cination, three coefficient solving methods are proposed so far, 

including LSE [5], SR [7] and our WSR .Among them, SR outper-

forms LSE leading to PSNR gain 0.14dB and SSIM gain 0.0027, 

respectively. Comparing WSR with SR, it is worth pointing out 

that PSNR and SSIM gains substantially total up to 0.76dB and 

0.0102 . In other words, WSR makes greater progress than SR in 

terms of PSNR and SSIM, and thus contributes the development of 

position-patch based face hallucination. 

 In addition, We chose 5 pictures to show in Fig. 5, and it is 

obviously observed that the edges and facial details around nose 

and mouth areas in images generated by WSR are preserved better. 
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Fig. 4. Objective results on FEI face database. PSNR average 

gain: 0.76 (WSR 32.93,SR 32.17); SSIM average gain: 0.0102 

(WSR 0.9171,SR 0.9069). 

 

To test robustness to noise, we conducted experiments using 

noise corrupted face images which were added with 5  zero 

mean Gaussian noises. Some subjective results are shown in Fig.6. 

We can observe WSR is more robust to noise than SR. WSR al-

most completely removes interference noises and it does not result 

in blurring effects on facial features such as mouth, nose and eyes. 

Meanwhile, results in Fig. 6 are more pronounced than those in Fig. 

5. This is partially due to the fact that noisy images are less sparse, 

and thus sparse representation method can benefit more from simi-

larity constraints in the presence of noise.  
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Fig. 5. Subjective results on FEI face database. First row: input 

LR faces (enlarged using bicubic). Second row: SR. Third row: 

WSR. Fourth row: original HR faces. 

 

 
Fig. 6. Results on noises corrupted faces. Top: input LR noisy 

faces (enlarged using bicubic). Middle: SR. Bottom: WSR.  
 

5. CONCLUSIONS 
 

In this paper, we have proposed a WSR method to boost the per-

formance of position-patch based face hallucination. From the pro-

spective of seeking the most similar variation tendency for similari-

ty and coefficient magnitude series, which actually turns out a max-

imum cross-correlation problem, we impose a similarity-inducing 

constraint onto 1 -norm regulation term. Not only can WSR ac-

count for correlation but also similarity in terms of distance. This 

way WSR also avoids training bases that are far from the test patch 

in the process of face hallucination. Moreover, we suggested a ro-

bust distance metric to compensate possible illumination variations 

present in actual images. Experimental results on FEI face database 

have demonstrated the superiority of WSR over regular SR in terms 

of PSNR, SSIM and subjective visual quality. Our future work will 

focus on extending WSR to the generic image super-resolution 

problem. In addition, we plan to employ more complex but accurate 

model, e.g., regression models, to match the variation tendency for 

coefficient and similarity series in the future.  
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