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ABSTRACT

This paper presents several strategies for spectral de-noising of
hyperspectral images and hypercube reconstruction from a limited
number of tomographic measurements. In particular we show
that the non-noisy spectral data, when stacked across the spec-
tral dimension, exhibits low-rank. On the other hand, under the
same representation, the spectral noise exhibits a banded structure.
Motivated by these features we show that the de-noised spectral
data and the unknown spectral noise and the respective bands can
be simultaneously estimated through the use of a low-rank and
simultaneous sparse minimization operation without prior knowl-
edge of the noisy bands. This result is novel for for hyperspectral
imaging applications. In addition, we show that imaging for the
Computed Tomography Imaging Systems (CTIS) can be improved
under limited angle tomography by using low-rank penalization.
For both of these cases we exploit the recent results in the theory
of low-rank matrix completion using nuclear norm minimization.

Index Terms— Hyperspectral imaging, de-noising, Limited an-
gle tomography, low-rank recovery.

I. INTRODUCTION

This paper addresses two specific image reconstruction chal-
lenges encountered in the field of hyperspectral imaging: de-noising
in the presence of spectral noise and hypercube reconstruction
from a limited set of Radon projections similar to angle limited
Computed Tomography Imaging Systems (CTIS).

The first of these two problems is motivated by the desire to
remove noise at specific frequency bands from hyperspectral image
cubes. This problem frequently arises when using satellites or
aircraft to capture hyperspectral images of the earth in which the
light reflecting from the surface of the earth must travel through
several kilometers of atmosphere to the sensor. The atmosphere
even without the presence of clouds has extremely high absorption
bands, particularly at 1400 nm and 1900 nm due to water in
the atmosphere [1]. This effect leads to numerous bands being
discarded for many data classification and analysis algorithms [2]
[3].

In order to mitigate the effects of both this spectral and elec-
tronic noise several de-noising techniques such as multidimensional
Wiener filtering [4] and methods exploiting the use of high order
singular value decompostion [5], curvelets [6], and wavelets [2]
[7] have been used to de-noise these effects. However, both the
intensity dependence the noise and the concentration across a few
spectral bands makes the removal of optical noise challenging
[8]. Many of these techniques are based on the premise of noise
being gaussian and performance can be poor [9]. Typically a
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preprocessing (whitening) step is needed to mitigate the effects of
the Poisson noise and improve performance [9]. Recently, efforts
to de-noise spectral bands have focussed on the use of sparse or
joint penalizations in an appropriate basis such as wavelets [10]
and dictionary learning techniques [11].

In this paper we will explore a novel spectral de-noising tech-
nique based on a low-rank and simultaneously sparse matrix de-
composition. The low-rank sparse matrix decomposition or Robust
Principle Component Analysis (RPCA) has been well studied and
theoretical limits well characterized in recent years [12] [13].
Furthermore, RPCA has been successfully employed in image and
video processing to separate background from the foreground [14]
and remove ‘salt and pepper’ noise from imagery [12]. However,
little research has been done to explore variations of RPCA such
as a low-rank group sparse decomposition and its potential applica-
tions. In particular, Tang proposed a feasible solution to solving the
group RPCA problem through the method of Augmented Lagrange
Multipliers [15] and Ji demonstrated the use of group RPCA to
de-noise video data [16]. This paper provides another potential
application and extension of RPCA to CTIS systems.

In the second part of this paper we will focus on the problem
of estimation of the hyperspectral data cube from limited number
of tomographic projections. Here we show how the use of low-
rank regularization can be used to improve an existing class of
hyperspectral imagers. These hyperspectral imagers [17], [18], [19]
sample the hyperspectral image cube by simultaneously (i.e. not
sequentially) taking a number of Radon type projections of the
3D data cube onto a 2D focal plane array using diffractive optics.
Traditionally filtered back-projection methods have been employed
to recover the data cube form these tomographic projections. How-
ever, these techniques need a large number of projections to ensure
accurate results, avoid the so called missing cone problem [20] and
often fail in noisy environments. This need for a large number of
projections increases the necessary focal plane size beyond what
is often feasible. In this context we demonstrate how one can
exploit the low-rank regularization to improve the reconstruction
under these classes of simultaneous and compressive measurements.
Note that although some research has focussed on the use of both
sparse and low-rank reconstructions of hyperspectral image cubes,
these studies use practically infeasible sampling techniques such
as randomly sampling a small set of pixels within the image cube
[21].

II. STRUCTURAL COMPLEXITY OF HYPERSPECTRAL
IMAGES

A hyperspectral image or data cube consists of many images
of the same size collected over a number of spectral bands.
Mathematically the hyperspectral image can be considered as a
three-dimensional matrix L € R™*™*! with spatial dimensions
of m and n pixels and at [ wavelengths. One can reshape the
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Fig. 1. Left: Normalized total counts in the AVIRIS image as a
function of band. We see two pronounced absorption bands. Right
& Center: This figure shows a 3D and 2D representation of a
hyperspectral image. Much of the structure in the matrix appears to
be vertical but the horizontal bands are spectral noise at absorption
bands.

hyperspectral image as a two-dimensional array with a number of
columns equal to the number of spectral bands and where each
column is the vectored image at the given band, see Figure 1.
With slight abuse of notation we denote the reshaped image by
L € R™*' We now present two observations regarding the
structural complexity of the image data which will be exploited
for recovery and de-noising.

II-A. Low-rank structure of the hyperspectral data cube

Although a hyperspectral image/data may have numerous bands,
it has been shown that signal subspace is significantly smaller
than the number of bands [22] [23]. In particular the eigenvalues
of the reshaped hyperspectral cube L obey a power law decay.
This means the vector of eigenvalues has a small weak-¢, norm
[24] which implies that image is compressible under the suitable
transformation. This intuition can be physically explained by con-
sidering the Singular Value Decomposition (SVD) of the (reshaped)
hyperspectral matrix L.

L=UxZV" (1)

We can think of the right singular vectors as giving the spectra of
the common elements in the scene and the left singular values as
the concentration map of these spectra. The singular values then
give the relative amount each compound in the scene. Low-rank
of the image can then be interpreted as presence of a few spectra
with a correlated concentration profile across space.

II-B. Sparsity structure of hyperspectral noise

In hyperspectral imaging the atmosphere can lead to vastly differ-
ent absorption rates across the spectrum of interest. In particular as
shown in Figure 1, the two water absorption bands are attenuated,
roughly at band 60 and 100. In a typical hyperspectral data process-
ing the data from these two bands would be discarded. On the other
hand we note that in the noisy reshaped image, the spectral noise
exhibits a banded structure which is mathematically equivalent
to saying that hyperspectral noise exhibits a simultaneous sparse
structure under the given reshaping of the data cube.

Therefore, the noisy reshaped hyperspectral data cube can be
represented as Y = L 4+ S where L is the low-rank non-noisy

image and S is the spectral noise which is simultaneously or group
sparse across bands.

III. ROBUST & RAPID HYPERSPECTRAL IMAGING

Both the spectral de-noising and limited angle reconstruction
problems can be viewed through the following framework in which
we observe noisy measurement, Y of hyperspectral image cube L
through a measurement system described by the linear operator
(matrix) A, i.e.

Y = AL +8) 6)

The problem is that given the observation Y and the sensing
operator A (to be defined below for both problems of interest) we
want to recover the de-noised image L while removing the noise
S.

III-A. Complexity penalized recovery algorithms

To de-noise and recover the hyperspectral data, one can exploit
the low-rank and sparse structure of the data and noise and solve
the following optimization,

min ||A(L + 8)(:) = YI[5 + Arrank(L) + As[|S[lo  (3)

where A\;, & Ag control the relative strength of the sparsity and
low-rank penalization and [|S||p,q is the p-norm of the vector
formed by taking the g-norm along the rows of S or otherwise
also known as ¢, , norm. This optimization problem is known to
be NP-hard. However, the rank and support penalties can be relaxed
to the nuclear norm and ¢; > norm, respectively, which makes the
optimization tractable while still encouraging the desired structure
for L and S [12]. Therefore we relax the above combinatorial
optimization problem to the following convex optimization problem
and consider three cases.

min | A(L +8) — yl[3 + ALlIL|l. + As]IS|

1,2 4)

Case I - Hyperspectral de-noising with raster scan data - In
this case A is an identity operator and therefore the optimization
problem becomes,

min ||L+ 8 = Y5 + Ar[[L[l. + As|IS|[12 ®)

In Section IV we will demonstrate the performance of this

algorithm on real hyperspectral data and give experimental results
that motivate why the sparse component is necessary for the de-
noising.
Case II. - Image recovery from limited angle tomography:
No spectral noise - As pointed out in the introduction the CTIS
systems are limited by the size of focal plane array which limits
the number of tomographic projections that can be obtained. In
this case traditional reconstructions suffer from the missing cone
problem [20]. These methods however do not exploit the low
complexity of the underlying data cube. Assuming no spectral
noise, given the limited number of Radon projections we propose
the following algorithm for estimation of the hyperspectral image
which exploits the low-rank structure.

min [|A(X) = Y|z + A[[X]]. (©)

Case III. - Image recovery from limited angle tomography:
Noisy case - Here we consider the most general case where the
spectral data is corrupted by banded spectral noise and the data
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is acquired through a CTIS system with limited number of Radon
projections. In this case simultaneous spectral cube recovery and
spectral de-noising is affected by solving for the optimization
problem given by Equation 4. In the next section we will present
detailed experimental results of the proposed algorithms on real
data sets.

IV. EXPERIMENTAL EVALUATION

In this section we will use a real hyperspectral image taken

from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
[website- http://aviris.jpl.nasa.gov/html/aviris.spectrum.html], far
above an rural scene with a spatial dimension of 128 by 128 pixels.
The imager uses 220 bands which cover the spectrum from IR to
visible range. The two water absorption bands centered at 1400 and
1900 nm corrupt the image. NOTE: All the optimization problems
below are implemented using TFOCS [25].
Case 1. - Hyperspectral de-noising - In some of the less noisy
bands the structure of the image is still somewhat visible (Figure
3). In order to improve the de-noising the AVIRIS data we first
take and record the Frobenious norm of each frame to construct a
Ny x 1 vector W. We then use this recorded vector to normalize
each image at given wavelength such that the signal energy in each
band is 1. Because we expect the noise in our experiment to be due
to low photon counts in bands of high absorption, we can use the
vector W to weight the minimization operation. In particular we
want to encourage row sparsity along the bands with low counts.
In order to do so we modify Equation 5 to include the weighting
factor W, that makes it more expensive for the intense bands to be
decomposed into the sparse matrix.

win|(L+8) = YIB + Acl[Lll. +Asl[WSlhe )

This weighting factor allows our algorithm to be more robust to
choices of A\g and A as it effectively decreases the coherence
between the ¢1 2 norm and the nuclear norm.

The minimization operation in Equation (7) is then applied to the
hyperspectral image with Ag of .06 and A of 0.1. The proposed
algorithm was successful in de-noising and was able to remove the
spectral noise. Figure 3 show the results of algorithm applied to a
few very noisy bands and Figure 2 shows the results applied to all
bands of the hyperspectral image. Like in the synthetic example,
we can now see structure in the bands that were previously noisy.

Measured Noise Estimate

Image Estimate

Fig. 2. This figure shows 2D hyperspectral cube with noise and
low-rank reconstruction.

Case II. - Hyperspectral imaging from limited Radon projec-
tions with no spectral noise - In the following example we attempt
to reconstruct the 32 by 32 image of the hyperspectral flower
[26] using a limited number of projections. The projections at
various angles for a typical single-shot CTIS system [17], [27] are

Truth: Band 103

Truth: Ban 1

&
o B2

Truth: Band 06

Estimate: Band 1  Estimate: Band 103 Estimate: Band 106

Fig. 3. This figure shows images from AVIRIS data at various
bands before de-noising and after de-noising.

shown in Figure 4. Gaussian noise was then added to the measured
projections, such that the resulting SNR of the projections was
4.5 dB. This projection operation can be represented through the
underdetermined matrix \A. In this case we solve the optimization
problem (6) for recovery. We compare the performance of this
method to the standard Tikhonov regularization approach with ¢
norm penalty instead of nuclear norm penalty. The choice of A for
both cases were determined using the Kolmogorov-Smirnoff (KS)-
test method described in Section IV-A. As expected the low-rank
minimization resulted in a better reconstruction of the hyperspectral
image cube with normalized mean square error of .23 versus .35
for the Tikhonov reconstruction. The resulting reconstruction for
the 12*" band is shown in Figure 5.

X:16Y: 4 X:1Y:—11 X:=7Y:5
X:16Y: -16 X:2Y:16 X:-5Y:8 X:2Y:1
X:-9Y:10 X:3Y:14 X:-9Y:-14 X:1Y:3

Fig. 4. This figure shows the 12 noisy radon projections of
the hyperspectral image cube. With 12 projections the system is
underdetermined.

Case IIL.- Simultaneous tomographic reconstruction and de-
noising - Here we attempted to remove spectral noise from a
hyperspectal data cube and reconstruct the cube from a limited
number of Radon projections. In order to do so we use a 64x64
section of the original AVIRIS image as used above and observe
cube through the same Radon matrix as in the flower example.
The simultaneous reconstruction and spectral noise was recovered
by solving the optimization problem given in (4) the results are
shown in Figure 6. The regularization parameters were chosen
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Fig. 5. This figure shows an example of the true image, low-
rank reconstruction, and least square reconstruction, from the
hyperspectral flower at band 12.

using the KS-surface method described in the following section. We
show good reconstruction outside of the noisy bands and significant
reduction of noise within the spectrally corrupted bands. Although
the noise was somewhat reduced in the corrupted bands, as is to be
expected in this limited data case, the images still remained nosier
than the case when the image hypercube was directly observed with
the identity operator.

Truth Band 45

Truth Band 1 Truth Band 103
o =

=

Fig. 6. This figure shows the reconstructed and original hypercube
at two noisy bands 1 & 103 and at the clean band 45. The recon-
struction at the noiseless bands highly resemble the original image.
Although somewhat de-noised, the the images at the corrupted
bands remain somewhat blurry and the presence of noise is still
visible.

IV-A. Selection of parameters \; and \gs

In all of the above algorithms the issue of selection of complexity
regularization parameters As is of practical importance. In the
following experiments that we carried out on real and synthetic data
sets the choice of both As and A\, was determined using a one and
two dimension variation of the Komolgrov-Smirnov test method
proposed in [28]. The method essentially computes the KS test
statistics of errors for a particular value of regularization parameter
with respect to error residuals at extreme values of regularization
parameter(s) and generates two curves. The operating point is then
picked at the intersection of these two curves.

Selection of regularization parameter for limited angle to-
mography: no spectral noise - The KS plot was generated
with logarithmic spaced choice of A from 10~! to 102. The KS
statistic values and the associated p-values are shown in the top
of the Figure 7 and their intersection yield a slight suboptimal A
of 12.6. For reference the KS-test was preformed for Tikhonov
regularization and the optimal, see Figure 7-bottom left plot. From

this plot we can see that for all feasible values of A Tikhonov
regularization results in a poorer reconstruction than the nuclear
norm reconstruction. In addition to performing the KS-test for
selection of regularization parameter the L-curve method [29],
commonly used for the selection of the A was also generated, see
Figure 7 bottom right. The L-curve method results in a shallow
curve without the presence of sharp knee typical of L-curve plots.
The lack of the knee makes it very difficult to select a A and
introduces an opportunity for user bias in the selection of the
regularization parameter.

P values

KS-Test

10 20 30 40
A index

20
2 index
1 True Error

L curve

—e— Nuclear 05
— Tikinov 10
5

Residual

o 10 20 30 40 o
A index 10° Nuclear norm

Fig. 7. Top plots - KS test plot for recovery under limited Radon
projections for the case considered. Bottom plots: (Left) - MMSE
computed using the true image for various values of A for Tikhonov
and RPCA methods; (Right) - L-curve for optimization of (6) .

Selection of regularization parameter for limited angle to-
mography with spectral noise - For this we extend the one
dimensional KS test method in [28] to a two dimension variation
by generating a KS test surface. In order to generate the KS-surface
many KS-tests were run with a fixed As and the A\; was varied
from 1072 to 10™'. This process was then repeated for a range
of \s from 1072 to 107", effectively generating a KS-plot for
the selection of Az for a given value of As. We can then view
these multiple KS-tests as two surfaces of KS statistics as shown
in Figure 8 (left plot), where the intersection of the two surfaces
represents best choice of Az as a function of Ag. From this KS-
surface we can then interpret the line defining the intersection of
the two surfaces line of optimal regularization pairs. We can then
take the pair corresponding to the smallest value and largest value
of A\, and generate a conventional one dimensional KS-test along
the intersection of A pairs as shown in Figure 8 right. In this was
the one dimensional KS-test selects the best pair set among the
intersection of pair sets.

KS Surface

KS Intersection

Fig. 8. KS Surface for selecting regularization parameters for si-
multaneous data cube recovery and hyperspectral noise elimination.
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