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ABSTRACT

Tracking multiple vehicles in wide area traffic scenes is chal-
lenging due to high target density, severe similar target ambi-
guity, and low frame rate. In this paper, we propose a novel
spatio-temporal context model, named maximum consistency
context (MCC), to leverage the discriminative power and ro-
bustness in the scenario. For a candidate association, its MCC
is defined as the most consistent association in its neighbor-
hood. Such a maximum selection picks the reliable neigh-
borhood context information while filtering out noisy distrac-
tion. We tested the proposed context modeling on multi-target
tracking using three challenging wide area motion sequences.
Both quantitative and qualitative results show clearly the ef-
fectiveness of MCC, in comparison with algorithms that use
no context and standard spatial context respectively.

Index Terms— Context modeling, multi-target tracking.

1. INTRODUCTION
Surveillance over wide area motion imagery (WAMI) has re-
cently been attracting increasing amount of research attention
due to its wide range of applications and the advance in ac-
quisition techniques [1–10]. However, tracking and detection
of multiple moving vehicles in such scenes are challenging
tasks, since a wide area traffic scene usually contains much
more moving targets than traditional visual tracking scenarios
do. These targets are often hard to distinguish from each other
due similar appearances and small sizes in images. In addi-
tion, the low frame rate, which is typical in WAMI applica-
tions, brings extra ambiguity for associating targets over long
time periods.. To address such ambiguity, researchers have
investigated ways to integrate additional information, such as
prior knowledge [11], scene structures [5], and target con-
text [6, 9, 10].

Using target context to improve multiple target tracking in
wide area traffic scenes is of special interest because it is rela-
tively domain independent and therefore applicable to various
situations. For a target under investigation, existing meth-
ods [6] usually model its context by the spatial distribution of
other targets within its neighborhood. Such modeling implic-
itly assumes that the neighborhood context is reliable, which
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Fig. 1. Spatial context (a–b) and maximum consistency context (c).
(a) Traffic scene in frame t. Circular-polar histogram centered at
object ‘A’ represents its spatial context. (b) Traffic scene in frame
t + 1. Circular-polar diagram denotes the spatial context of object
‘a’. (c) Traffics in frame t and t + 1 are overlapped and shown
in different color. Association (B,b) is the maximum consistency
context of association (A,a).

for example is true for a group of targets moving together.
However, in traffic scenes it is common to see vehicles with
opposite directions are spatially close to each other due to the
juxtaposition of two-way lanes. Furthermore, the false posi-
tives in target detection often introduce noises into the spatial
context. An example is illustrated in Fig. 1(a–b).

Motivated by the above observation, we propose a new
model named maximum consistency context (MCC), which
is a spatio-temporal context and is robust to noises in target
neighborhood. For a potential association from two consec-
utive frames, e.g. (A, a) in Fig. 1(c), the idea is to extract
context information from only the most consistent associa-
tion in (A, a)’s neighborhood, e.g. (B, b) in Fig. 1(c). With
contextual information, MCC effectively reduces the distur-
bance from neighbor targets which either head in different
directions or are false detections. Meanwhile, MCC provides
strong discriminative features to guide multi-object associa-
tion across frames.

2. RELATED WORK
Multiple target tracking (MTT) is a widely studied topic in
computer vision (e.g. [12, 13]). The focus of this paper
is on the context modeling in MTT. Contextual information
plays a critical role in visual tracking. Yang et al. [14] pro-
posed to explore the auxiliary objects which have persistent
co-occurrence and consistent motion correlation with the tar-
get object, to help localize and reacquire targets. However,
it is hard to mine the auxiliary objects. In Reilly’s work [6],
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Fig. 2. The framework of wide area surveillance.

the context is the representation of geometric relationships of
objects with their respective neighbors. Grabner et al. [15]
proposed to use local features, which have some temporal re-
lations with the target, to predict the target position. How-
ever, the method is computationally expensive on finding and
matching features, and it is neither suitable for traffic scene.
In [10], Ali et al. propose to use similar objects to predict
and reacquire targets after occlusion, but they assume object
detections are good enough.

Compared with aforementioned work, the main contribu-
tion is the novel context model, which fits well the task of
tracking cloudy targets with mixed local motion patterns.

3. MULTIPLE VEHICLE TRACKING

3.1. Framework Overview

Following the general tracking-by-detection framework [16,
17], we treat multi-vehicle tracking as a target association
problem. We roughly divide the tracking framework into
three consecutive stages: preprocessing, detection, and as-
sociation. The flow chart is summarized in Fig. 2. In this
section we will briefly introduce the first and second stages.
Then we will elaborate in detail the proposed context model
and association algorithms, which are the focus of our work.

In the preprocessing, similar as in [6], we first make use
of registration for image alignment. In particular, Speeded
Up Robust Features (SURF) [18] features are used for the ef-
ficiency and we then fit affine models for image warping. Af-
ter the alignment, background modeling is achieved through
a standard median filter.

In the detection, instead of directly using the results from
background subtraction, a vehicle classifier cascade is applied
on the results in order to eliminate noises. The cascade is
composed of two SVMs: the first SVM uses simple shape
features (dimensions of a candidate target); and the second
SVM uses the histogram of oriented gradient (HOG) [19] .

3.2. Multi-Object Association

Some notations are given first. We denote the image se-
quences as {It : t=1,...,nI}, such that It is the frame at time
t. The detected candidates at time t are denoted as Ot =
{oti : i = 1,...,ni} containing ni candidate targets (objects).
A target o is defined as a vector o=(x(o),h(o),θ(o),a(o)) or

simply (x, h, θ, a), where x, h, θ and a denote the location,
appearance histogram, orientation and area of o respectively.

Without loss of generality, we assume the two frames to
be associated are frames 1 and 2. To handle the missing tar-
gets and false detections in O1 and O2, we introduce dummy
targets into the two sets and then assume they have the same
number of targets, i.e., n1 = n2 = n. The multi-object asso-
ciation can be defined as to find the assignment Π = {πi,j} ∈
{0, 1}n×n to maximize certain total association score, de-
noted as E(Π;O1, O2). The problem is formulated as

max
Π

E(Π;O1, O2) = max
Π

n∑
i=1

n∑
j=1

πij(sij + cij) , (1)

s.t.
n∑
i=1

πij=1;
n∑

j=1

πij=1;πij ∈{0, 1}; i, j∈{1,...,n}, (2)

where πij = 1 (or 0) indicates there is an (or no) association
between o1i , o2

j ; sij measures the affinity between o1i , o2j ; and
cij represents the context similarity between o1i , o2j .

The association without context modeling can be viewed
as a special case where cij = 0, ∀i, j. The association prob-
lem turns to a standard integer assignment, where the Hun-
garian algorithm [20] provides the optimum solution.

The item sij measures the similarity between targets o1i =
(xi,hi,θi,ai) ∈ O1 and o2j = (xj ,hj ,θj ,aj) ∈ O2, in terms of
appearance, area and orientation. Specifically, it is defined as

sij = αsh,ij + βso,ij + (1− α− β)sa,ij , (3)
where sh,so and sa denote respectively for similarities in ap-
pearance, orientation and area; and α,β are weight factors.

3.2.1. Spatial context.
At frame t, for a target candidates oti = (xi, hi, θi, ai) ∈ Ot,
its spatial context (SC), denoted by SCt

i, measures the spatial
distribution of other candidates in Ot. Specifically, it divides
the neighborhood of oti into nd×no distance-orientation bins,
and SCt

i is then defined as a weighted nd × no histogram as

SCt
i(p, q)=

1

Z

∑
ok∈N t

i

exp
(
−(vik−upq)

⊤Σ−1(vik−upq)
)
, (4)

where N t
i ={otk:otk∈Ot, ∥xi−xk∥2≤r} defines the neighbor-

hood of oti with radius r; vik=(∥xi−xk∥2, atan2(xk−xi))⊤
calculates the relative distance and orientation of otk with re-
spect to oti; upq=(p∆d, q∆θ)⊤ represents the bin (p, q) such
that ∆d and ∆θ are the distance and angle interval respec-
tively; Σ is the estimated covariance matrix; and, finally, Z is
the normalization constant. An illustration of spatial context
is shown in Fig. 1(a–b).

With SCt
i, cij in Eq. (1) is represented as cij=sim(SC1

i,SC
2
j ),

where sim(., .) defines the similarity between two histograms,
which is computed using histogram intersection [21].

3.2.2. Maximum consistency context.
The spatial context captures rich statistics that is powerful
when the target’s neighborhood remains stable over time.

2189



However, in the wide area traffic environment, this can be vi-
olated since vehicles moving on opposite directions are often
close to each other. Likewise, SC can be vulnerable by inac-
curately taking such noises into account. In the following, we
present an alternative context modeling, which captures only
the most reliable information in a target’s neighborhood.

First, for two association pairs (o1i , o2j ) and (o1i′ , o2
j′), we

measure the consistency between them as follows,

φ
(
(o1

i,o
2
j ),(o

1
i′,o

2
j′)

)
=γ cos2(θij−θi′j′)+(1−γ)

2lijli′j′

l2ij+l
2
i′j′

, (5)

where θij = atan2(x(o1i ) − x(o2j )),lij =
∥∥x(o1i )− x(o2j )

∥∥
2

are the orientation and length of (o1
i , o2j ) respectively, θi′j′ , li′j′

have similar definitions; and γ is the weight parameter.
With this definition, we define the maximum consistency

context (MCC) for an association (o1i , o2j ) as

MCC((o1i ,o
2
j ),Π)= argmax

(o1
i′ ,o

2
j′ )∈N (o1i ,o

2
j ,Π)

φ
(
(o1i ,o

2
j ),(o

1
i′ ,o

2
j′)

)
, (6)

where N (o1i , o2j ,Π)={(o1i′ , o2j′):o1i′∈N 1
i , o2j′∈N 2

j , πi′j′ =1}
defines the spatio-temporal neighborhood of (o1i , o2j ), which
depends on the association Π.

The proposed MCC is more flexible as it does not request
the majority consistency in a target’s neighborhood. In con-
trast, it extracts context information only from the most reli-
able neighbor association. Such a scheme makes MCC robust
to distractions of inconsistent motions in a target’s neighbor-
hood, e.g., the vehicles running in opposite lanes in the high-
way scenario. It also performs robustly against false detec-
tions, as illustrated in Fig. 1.

To integrate MCC in track association, we define cij in
Eq. (1) as cij =φ

(
(o1

i,o2j ),MCC(o1i,o2j )
)
. As a result, we

have the following MCC-based association problem

max
Π

n∑
i=1

n∑
j=1

πij(sij + φ((o1i , o2j ),MCC(o1i , o2j ))) . (7)

Considering the fact that πij ∈ {0, 1}, we can rewrite (7) as

max
Π

n∑
i,j=1

πij(sij + max
(o1

i′ ,o
2
j′ )∈N (o1i ,o

2
j )
πi′j′φ((o1i,o

2
j ),(o

1
i′,o

2
j′))) . (8)

The formulation is a quadratic integer optimization with non-
smooth component (i.e., ‘max’). The global optimal solution
is unfortunately computationally expensive. In line with the
interlocked property of this formation, we devise an iterated
algorithm to optimize it, which is given in Algorithm 1.

Note that there are other approaches that can approxi-
mate the global solution for (8), such as simulated annealing
and Monte Carlo methods. These solutions are however very
time-consuming owing to their random property as well as
the high dimensionality in our problem. Our approach, with
a small number of iterations, i.e., nit = 10, efficiently gener-
ates excellent results as shown in our experiments .

Algorithm 1 Multi-object association with MCC
1: Input: two consecutive candidate target sets O1 and O2

2: Output: association matrix Π
3: Calculate affinities S = {sij} according to Eq. (3)
4: Initialization Π = 0;Emax = 0;C = {cij} = 0
5: for i = 1, 2, . . . , nit do
6: Compute the integrated similarities dij = sij + cij
7: Solve Eq. (9) using the Hungarian algorithm

max
Π

E(Π;O1, O2) = max
Π

n∑
i=1

n∑
j=1

πijdij . (9)

Denote the solution and score by Π̂ and Ê respectively.
8: Update C using Π̂ according to Eq. (6)
9: if Ê > Emax then

10: Emax = Ê , Π = Π̂.
11: end if
12: end for

3.3. Multiple frame association
We treat multi-frame tracking as a task of associating short
reliable tracklets into long tracks, in a similar framework used
in [22, 23]. Two procedures, reliable tracklets acquisition and
tracklet-to-tracklet association, are performed iteratively.

Reliable tracklets are obtained by checking the motion
smoothness of trajectories. Suppose a basic tracklet is Mk

1:t=
{o1

k, o2
k, ..., otk}, it is reliable only if

θkt−1,t − θkt,t+1 < θ0;min
{ lkt−1,t

lkt,t+1

,
lkt,t+1

lkt−1,t

}
> l0, (10)

where θkt−1,t,l
k
t−1,t are the orientation and length of asso-

ciation (ot−1
k , otk) respectively; θ0 and l0 are corresponding

thresholds. In this way, if association (ot−1
k , otk) has in-

consistency with adjoining associations, trajectory Mk
1:t is

divided into two short tracklets by breaking the association
(ot−1

k , otk).
Tracklet-to-tracklet association follows the similar man-

ner as two-frame multi-target association. First, the affinity
between two tracklets is constituted of appearance, motion
and temporal similarities. Later, Hungarian algorithm is used
here again to associate the two tracklets into the long one.

Finally, isolated detections and too short tracklets after
multi-frame association are discarded as false alarms.

4. EXPERIMENT
Our experiments are conducted on the CLIF dataset [24].
CLIF is challenging with following features. 1) Large image
format (4008×2672); 2) Large camera and target motion;
3)Tiny target occupancy (4∼70 pixels); 4) Similar target
appearance; 5) Low frame rate sampling (2 fps); and 6) A
large mount of targets (hundreds). Three sequences with 80
frames (40 seconds), 50 frames (25 seconds) and 100 frames
(50 seconds) respectively are used to evaluate the proposed
approach.

To study the effectiveness of the proposed context, we
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Fig. 3. Associations with different contexts on Sequence 1. Top:
NoCon. Middle: SC. Bottom: MCC. Black(White) rectangle: detec-
tion in the last(current) frame. Red(blue) line: rightward(leftward)
association output.

evaluate three types of associations: association without con-
text (NoCon), with the spatial context (SC) and with the pro-
posed maximum consistency context (MCC). Furthermore,
for each method, we test two different affinity models: with
appearance features and without. In all cases, Hungarian al-
gorithm is used as the basic assignment solution.

The parameters are set as follows: γ in Eq. (5) is set as
0.5 in the first sequence and 0.8 in the other two sequences. If
appearance feature is used, both α and β in Eq. (3) are set as
0.3 in all sequences. Otherwise, α and β are set as 0.5 equally.
The maximum iteration number (nit in Algorithm 1) is 10.

We use the precision, 100
∑

t c(t)/
∑

t g(t), to measure
the association performances. c(t) and g(t) in the precision
measure denote the numbers of correct and groundtruth asso-
ciation respectively. Results are summarized in Table 1.

From the results, we have the following observations.
First, the proposed MCC performs the best in general. Fur-
thermore, if no appearance is used in the association, all
methods have degenerated performances, yet our method is
affected least. This confirms that the proposed context plays
an important role in handling the motion ambiguity. Second,
spatial context helps little in performance. This seemingly
contradicting phenomenon can be attributed to two factors:
(1) the scenes we selected contain mainly two-direction high-
ways, which largely confuses local context as we conjectured;
and (2) the vehicle detection is rather noisy, leading to un-
stable spatial distributions. Third, the method without using
context obtains the moderate results, which attributes to kinds
of well-designed affinity measures. However, when excluding
the appearance information, the performance drop of NoCon
is much larger than those of SC and MCC.

Qualitative results of three methods on sequence 1 are
shown in Fig. 3, which is a snapshot of two-frame association.

Seq 1 Seq 2 Seq 3
A+ A− A+ A− A+ A−

NoCon 92.1 88.5 89.5 77.8 90.7 86.0
SC 86.8 86.1 84.8 76.2 75.2 72.9

MCC 92.5 90.5 89.6 80.5 91.3 89.6
Table 1. Precisions of multi-object association. ‘A+’: appearance
features are used; and ‘A−’: no appearance features are used.

Fig. 4. Multiple object tracking results, Top: sequence 3; Middle:
sequence 2; Bottom: sequence 1

Associations with SC are distracted by those cars moving in
opposite directions. While NoCon is vulnerable to ambient
similar objects, after embedding MCC, the motion ambiguity
is greatly alleviated. With the help of neighbor association,
confused object succeeds in finding true associated target, it
can be seen from Fig. 3.

Results of multiple object tracking are shown in Fig. 4.
It can be seen that, our approach has two merits. First, there
are few wrong two-frame association. Second, our approach
associates the track fragments into long tracks, which is espe-
cially useful in the case of occlusion and missing detections.

We do not have quantitative evaluation on multiple object
tracking, as no groundtruth data is available. The labeling of
associations in wide area traffic scenes is a very time consum-
ing work, which we will consider in the future.

5. CONCLUSION

In this paper, we propose a novel spatial-temporal context,
maximum consistency context (MCC), to assist multi-object
tracking in wide area traffic scenes. By picking the most re-
liable ingredient in the spatial-temporal neighborhood of an
association, MCC leverages the discriminative power and ro-
bustness against clutter distractions. Experiments using chal-
lenging wide area surveillance videos validate the effective-
ness of the proposed approach.
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