
A HYBRID APPROACH FOR TREE CLASSIFICATION IN AIRBORNE LIDAR DATA 

 

Xiaoling Li Wenjun Zeng      Ye Duan 

 

Department of Computer Science, University of Missouri 
 

ABSTRACT 

 

In this paper we propose a hybrid approach for tree 

classification in airborne LIDAR (Light Detection and 

Ranging) data by integrating the point based supervised 

classification with region-based unsupervised clustering 

method. Furthermore we propose a novel 3D robust 

statistics-based shape feature that can overcome the 

limitations of existing methods in separating building 

boundary points from tree points. Experimental results show 

the new algorithm is very effective and can achieve very 

high accuracy. 

 

Index Terms— Airborne LIDAR, Classification, Tree, 

Robust Statistics. 

 

1. INTRODUCTION 

 

Airborne LIDAR data has become more and more important 

in 3D urban scene modeling and understanding applications. 

One of the essential tasks in these applications is to 

accurately classify tree points from the airborne LIDAR 

data. Recently Charaniya et al. [4] and Lodha et al. [5] 

applied machine learning techniques such as AdaBoost and 

expectation maximization to perform airborne LIDAR 

classification that separates the data into four main 

categories. Carlberg et al. [6] performs segment wise 

classification of airborne LIDAR data based on PCA based 

saliency features. Chen et al. [7] performs 2D tree 

classification in airborne LIDAR data by combining over-

segmentation and under-segmentation followed by 

classification. Despite significant success, existing methods 

still have difficulty in separating the building boundary 

points from tree points as described in [7]. 

       In this paper we propose a hybrid approach for tree 

classification by integrating point based supervised 

classification with region-based unsupervised clustering. 

Furthermore we propose a novel 3D robust statistics-based 

shape feature that can overcome the limitations of existing 

methods in separating building boundary points from tree 

points. 

      The rest of the paper is organized as follows. Section 2 

describes the details of the proposed algorithm. The 

experimental results are presented in Section 3. Section 4 

draws the conclusion and discusses some future work. 

  

 

2. THE PROPOSED HYBRID APPROACH  

 

The proposed hybrid approach intends to address the 

problem of misclassification of building boundary points 

and tree boundary points often observed in prior works. 

 

There are three main steps in the proposed hybrid approach: 

 

1. Clustering by spatial and range affinity 

2. Classification using supervised machine learning 

leveraging a proposed 3D shape feature 

3. Refined classification based on unsupervised 

clustering 

 

We elaborate on each of the three steps in the following sub-

sections. 

 

2.1. Clustering by Spatial and Range Affinity 

 

We first convert the 3D LIDAR points into a depth image 

by projecting the 3D points onto a uniform grid on the (x, y) 

plane. The intensity of the pixel in the grid will be 

determined by the average of the z values (height) of all the 

3D points projected onto the same grid point. Figure 1(a)-(b) 

shows an example. 

       Next we conduct region-growing based clustering [3] 

on the depth image. Starting with a seed pixel of a cluster, 

we iteratively include its neighboring pixels into the current 

cluster if: (1) the intensity difference between the 

neighboring pixel and the current pixel is within a threshold, 

and (2) the difference between the neighboring pixel’s 

intensity and the mean intensity of the pixels in the current 

cluster is within a threshold. Fig.1(c) shows the result after 

the clustering. Here the same color indicates the same 

cluster. The largest cluster is extracted as the ground cluster 

and will be used in the subsequent classification step. As 

can be seen from the figure, there are still some remaining 

pixels (shown in black) that are not assigned to any clusters. 

For example pixels belonging to trees generally have large 

depth variations thus may not join any clusters. After 

clustering we conduct connected component analysis on the 

remaining pixels to group them together based on spatial 

proximity. Fig.1(d) shows the result after connected 

component analysis. 
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2.2. Supervised Classification 

 

After clustering we conduct classification using Support 

Vector Machine (SVM) to train a classifier that can separate 

tree points from building points. The features we used in 

training include the following four features: normalized 

height, normal vector, normal vector variation, and the 

LIDAR return intensity. 

       Normalized height is calculated by subtracting the 

height value at the current point by the corresponding height 

value of the ground. The ground height is obtained from the 

ground cluster extracted in the previous clustering step with 

a hole-filling step [3] to fill in holes that represent other 

clusters in the ground cluster. 

 

  
     (a)                                             (b) 

 

 
(c)                                             (d) 

 

Figure 1: Depth image clustering based on spatial and range 

affinity. (a) Original LIDAR points; (b) Depth image 

converted from the LIDAR points; (c) Depth image 

clustering by region-growing based on the depth affinitiy. 

Different clusters are shown in different colors; (d) 

Connected component analysis for the leftover pixels from 

the previous clustering step. Different components are 

shown in different colors. 

 

      Normal vector is  the eigenvector of the smallest 

eigenvalue from the covariance matrix of the local 

neighborhood [1]. 

        Normal vector variation measures the variations of 

normal vectors within the local neighborhood of the current 

point and is defined as the mean cosine measure of the 

normal vectors in the local neighborhood. 

        Laser returned intensity is the scalar value reflected 

from the object back to the LIDAR scanner that relates to 

the material reflectivity of the object. 

       The above four features are very effective in separating 

typical tree points from typical building points (i.e. when the 

data does not contain points in the building boundaries or 

tree boundaries). As shown in Table 1 (a)-(c), the training 

accuracy can reach over 99% when we train the classifier on 

tree/non-tree points, building/non-building points and 

ground/non-ground points, respectively. However since 

points near the building boundaries often have large normal 

variations, the above features cannot separate building 

boundary points from tree points very well. Figure 2(a) 

shows the classification result on downtown St Louis using 

the classifier trained by the four features. Here the ground 

points are colored in yellow, building points are shown in 

blue while tree points are shown in green. The red circle 

highlights one of the areas where building boundary points 

are misclassified as tree points.  If we include building 

boundary points in the training data and retrain the classifier 

using the four features, the test accuracy reduces to 92% as 

shown in the confusion matrix listed in Table 2. To 

overcome the difficulty in separating   tree points from 

building boundary points, we propose a new 3D shape 

feature based on robust statistics in the next subsection and 

Fig 2(b) shows the result after using the new feature. 

 

  
(a) 

 

  
(b) 

 

Figure 2: An example of the classification results on around 

420000m
2 

of downtown St Louis (a) using models trained 

without the new 3D shape feature. Red circle highlights one 

of the areas where building boundary points are 

misclassified as tree points due to high normal variations. 

(b) Result after using the new 3D shape feature. 
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2.3. Proposed 3D Shape Feature 
 

The new 3D shape feature is based on the observation that 

there are generally multiple dominant planar structures near 

the building boundaries while there are no dominant 

structures in tree points. We employ iterative plane fitting 

with RANSAC (RANdom Sample Consensus) [8] to 

explicitly detect the multiple dominant planes in the 

neighborhood of building boundaries. Figure 3 shows an 

example. In Fig.3(a) one dominant plane is fitted (based on 

the red points), while Fig.3(b) shows another dominant 

plane is fitted (based on the blue points). After the fitting, 

we will compute the percentage of the points in the 

neighborhood that are inliers of one of the fitted planes and 

use it as a 3D shape feature in the tree classification. With 

this new feature added, the classification accuracy increases 

from 92% to 98.77%. 

 

 
(a)                                                   (b) 

 

Figure 3: 3D shape feature. Synthetic data points to simulate 

building boundary points (red points and blue points) with 

some noisy green and purple points added. We employ 

RANSAC based iterative plane fitting to detect the main 

dominant planes. (a): One of the planes is extracted based 

on the red points; (b): Remove the inliers (the red points), 

the other plane is extracted based on the blue points. The 

percentage of the points in this neighborhood that are inliers 

of one of the two fitted planes will be used as a 3D shape 

feature in the tree classification. 

 

2.4. Clustering Based Classification Refinement 
 

In this paper the classification is performed on 3D points 

directly. However the training data is based on the 2D depth 

image instead of 3D points. This implementation simplifies 

the training process greatly but it also results in the 

difficulty in providing training data that includes points in 

the boundary of trees. This is due to the fact that several 3D 

points could be projected onto one 2D pixel, thus it is 

possible to have both tree points and non-tree points 

projected onto the same 2D pixel. The lack of training data 

in the boundary of trees can result in some of the 

misclassification near the boundary of trees as can be seen 

in Fig.4 (a) and (b). To overcome this limitation we propose 

to employ results from the previous clustering step to 

conduct classification refinement. More specifically if a 

point is classified as tree then it will be labeled as tree; if a 

point is classified as non-tree points, then we will check its 

corresponding cluster obtained from the previous clustering 

result. If the current point is located in a cluster of which the 

majority members are trees then the current point will be 

labeled as trees. Figure 4 shows the classification result with 

the refinement step. Figure 5 shows the flow chart of the 

complete classification process. 

 

 
(a)                          (b) 

 

 
(c)                                   (d)         

 

 
(e) 

Figure 4: Classification result. (a) Result based on the 

supervised classifier only. Some of the tree points are 

misclassified; (b) Binary depth image (building points are 

shown as white, non-building points are shown as black) of 

points after removing tree points classified in (a); (c) Result 

after clustering based classification refinement; (d) Binary 

depth image of points after removing tree points classified 

in (c). It shows that tree boundary points are classified 

accurately by comparing with (b). (e) 3D view of the 

classification result. 
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Figure 5 Flow chart of the tree classification process. 

 

3. EXPERIMENTAL RESULTS 
 

In this section we show the preliminary results we obtained 

on some airborne LIDAR data. We use 5 fold cross 

validation for the supervised classification based on Support 

Vector Machine (SVM-light [2]) with RBF kernel. Table 1 

shows the confusion matrix when the first four features are 

used and the training data includes typical tree and building 

points. It can be observed that the accuracy is above 99%. If 

the training data includes the building boundaries then the 

accuracy reduces to about 92% (Table 2). When the new 3D 

feature is used in addition to the four features the accuracy 

improves to above 98% (Table 3). We apply the model to 

multiple unknown datasets and find the result are very 

accurate. Figure 6 shows another example. 

 
(a)                                             

(b)                                           

(c)                                           

 

Table 1. Confusion matrix for training data that includes 

typical tree, typical building and ground points and use the 

first four features on: (a) building vs non-building; (b) 

ground vs non-ground; and (c) tree vs non-tree, respectively. 

 
 

Table 2 Confusion matrix for tree vs non-tree when using 

the first four features and the training data includes building 

boundary points. 

 

 
 

Table 3 Confusion matrix for tree vs non-tree when the new 

3D shape feature is used in addition to the four features with 

the training data includes building boundary points. 

 

 
 

Figure 6: Classification result on another dataset.  

 

 

4. CONCLUSION 

 

In this paper we integrate point wise supervised 

classification with region-based unsupervised clustering for 

tree classification in airborne LiDAR data. Our algorithm 

overcomes the limitation of existing methods on classifying 

building boundary points by using a novel 3D shape feature. 
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