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ABSTRACT

Spectroscopy is a fundamental diagnostic technique in phys-

ical sciences with widespread application. Multi-order slit-

less imaging spectroscopy has been recently proposed to over-

come the limitations of traditional spectrographs, in particu-

lar their small instantaneous field of view. Since an inversion

is required to infer the physical parameters of interest from

slitless spectroscopic measurements, a rigorous theory is es-

sential for quantitative characterization of their performance.

In this paper we develop such a theory using the Cramer-Rao

lower bounds for the physical parameters of interest, which

are derived in terms of important instrument design consid-

erations including the spectral orders to measure, dispersion

scale, signal-to-noise ratio, and number of pixels. Our treat-

ment provides a framework for exploring the optimal choices

of these design considerations. We illustrate these concepts

for an application in EUV solar spectroscopy.

Index Terms— spectroscopy, Cramer-Rao bounds, in-

strument design, multiframe deblurring

1. INTRODUCTION

Spectroscopy is a fundamental diagnostic technique in physi-

cal sciences with application in diverse fields such as physics,

chemistry, astronomy, biology, and medicine. Spectrographs

enable sensing properties of a scene based on measurement of

radiated energy interacting with matter. The measured spectra

is the main source of information about the composition and

physical properties of targeted objects. For example, in as-

trophysical imaging of space plasmas, spectral measurements

provide estimates of emission line parameters, which are es-

sential for inferring the plasma parameters (such as density,

temperature, and flow speed) and understanding the complex

plasma behavior [1].

Spectroscopic imaging forms images of a scene at mul-

tiple wavelengths. However, obtaining the spectra of a

multi-dimensional region with inherently two-dimensional
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detectors poses intrinsic limitations on the spatio-temporal

extent of the technique. Traditionally spectroscopic instru-

ments have suffered from a small instanteneous field-of-view

(FOV), i.e. the inability to cover large spatial regions of a

scene quickly. A common observation strategy, based on

conventional slit spectrographs, is to use a narrow field-of-

view and a time-consuming rastering process, which as a

result limits the spectroscopic analysis of dynamic phenom-

ena. An alternative strategy is to use a slot spectrograph by

widening the slit; however the blur within the wide slit image,

resulting from the dispersion, has then been the bottleneck.

Multi-order slitless spectroscopy has recently been pro-

posed to address these limitations of traditional spectro-

graphs [2]. The problem of estimating spectral line param-

eters from these spectroscopic measurements can be viewed

as a multiframe deblurring problem with shift variant blur,

where multiple blurred images of the same object are ob-

tained through multiple spectrometer measurements, each

with a different spectral order [3]. However, to date there is

no theory that explores the design requirements to reliably

infer the physical parameters of interest from these noisy

measurements. In this paper we develop such a theory, and,

in particular, seek answers to the following questions:

• What minimum data is required for the estimation of

physical parameters of interest at a desired precision?

• What is the maximum expected precision in the esti-

mated parameters, and which instrument design con-

siderations can achieve it?

• How much improvement in the precision of estimates

is expected with additional spectral orders?

Our tool is the Cramer-Rao lower bound theory [4], which

gives the limitations on the precision of unbiased estimates,

independent of the estimation method used. We obtain the

Cramer-Rao bounds for the estimates of the physical quan-

tities of interest in slitless spectroscopy (for the case of sig-

nal dependent Gaussian noise). The Cramer-Rao framework

not only allows us to explore the requirements that render this
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new imaging modality effective, but also yields to optimal de-

sign choices to minimize the unavoidable precision errors due

to noise.

Our approach is similar to some previous works in the

literature, which have explored the error bounds for a sim-

pler problem of fitting a single Gaussian line to measure-

ments [5, 6]. The problem in this paper is equivalent to fitting

a superposition of multiple Gaussians to the measurements.

Recently we have derived approximate analytical bounds for

the estimation of spectral line parameters [3]. In this paper,

we extend this work to the physical parameters of interest and

bring instrument design considerations into the picture.

2. PROBLEM FORMULATION

Recently a novel parametric model for the measurements

of multi-order slitless spectroscopy has been developed [7].

Based on this model, each spectroscopic measurement is a

blurred version of the same object with a different spatially-

varying (Gaussian) filter of some unknown parameters. Let F
and Φa respectively denote the original image and its blurred

version with order a. Considering a row of pixels of length

M , the observed intensity of the blurred image in each pixel,

Φa
m, is related to the original image F , and the blur Ha by

Φa
m =

M
∑

m′=1

Fm′Ha
m,m′ . (1)

The blur function Ha with a 6= 0 is modeled to have a unit

Gaussian profile centered at each pixel m′, and characterized

by a line width, ∆m′ , and a line center shift, ǫm′ , which is

scaled by the order parameter a:

Ha
m,m′ =

{

1
∆

m′

√
2π

exp
[

− (m−m′−a ǫ
m′ )2

2∆2
m′

]

if a 6= 0;

δm,m′ if a = 0.
(2)

Note that when the order is zero, there is no blur on the image,

i.e. Φ0
m = Fm. Here Φa, F , ǫ, and ∆ all have the size M , and

both line widths ∆ and center shifts ǫ are measured in pixel

units.

We consider the following noise model for the measure-

ments:

Φ̃a
m = Φa

m + V a
m, V a

m ∼ N(0,

(

Φa
m

SNR

)2

) (3)

where we assume that the observation noise V a
m is signal-

dependent Gaussian noise that is uncorrelated across both m
and a. This noise model is also a good approximation to

signal-dependent Poisson noise when the signal values are

sufficiently large. Here the noise variance is expressed in

terms of the signal-to-noise ratio, SNR, which is defined as

the ratio of the signal mean to the standard deviation of the

noise.

In the intended application of space plasma imaging, an

observed blurred image Φ̃a corresponds to a dispersed image

with spectral order a and the parameters F , ∆, and ǫ respec-

tively model the integrated intensities, widths, and Doppler

shifts of the emission lines radiated from each pixel.

3. CRAMER-RAO ERROR BOUNDS

In the inverse problem, the goal is to estimate the unknown

parameters F , ∆, and ǫ (i.e. the spectral line parameters)

from the multiple measurements of Φa with orders a ∈ A.

(This problem can be viewed as a multi-frame deblurring

problem with shift-variant blur [3].) By Cramer-Rao lower

bound (CRB) theory [4], the variance of unbiased estimates

of the parameters {F,∆, ǫ} provided by any method is always

lower bounded by

var(θ̂i) ≥ [I(θ)−1]ii. (4)

where θ denotes the parameters {F,∆, ǫ}, θ̂i denotes any un-

biased estimator of the parameter θi (corresponding to the

ith element of θ), and I(θ) is the Fisher information matrix

whose (i, j)th element is given by

[I(θ)]ij = −E

[

∂2

∂θi ∂θj
logL

]

(5)

where the right side is evaluated at the true value of the pa-

rameters, denoted by θ. In our problem, the log-likelihood

function, logL, is [3]

logL ∝−1

2

M
∑

m=1

∑

a∈A

(

SNR

Φa
m

)2

(Φ̃a
m−Φa

m)2− log

(

Φa
m

SNR

)

where the constant term that is independent of the unknown

parameters is omitted. Hence the elements of the Fisher in-

formation matrix can be obtained as

[I(θ)]ij = (SNR2 + 2)

M
∑

m=1

∑

a∈A

1

(Φa
m)2

∂Φa
m

∂θi

∂Φa
m

∂θj

= (SNR2 + 2)

(

∑

a∈A
JT
a Σ2

ΦaJa

)

ij

(6)

where ΣΦa = diag(1/Φa
1 . . . 1/Φ

a
M ) is a diagonal matrix,

and Ja is M × 3M Jacobian matrix of Φa, that is (Ja)mi =
∂Φa

m

∂θi
. The Jacobian matrices Ja with a 6= 0 can be computed

from the first derivatives of the blurred images as follows:

(Ja)m,3k+1 =
1

∆k

√
2π

e
− (m−k−a ǫk)2

2∆2
k

(Ja)m,3k+2 =
Fk

∆2
k

√
2π

e
− (m−k−a ǫk)2

2∆2
k

(

(m− k − a ǫk)
2

∆2
k

− 1

)

(Ja)m,3k+3 =
Fk a

∆3
k

√
2π

e
− (m−k−a ǫk)2

2∆2
k (m− k − a ǫk)
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whereas for a = 0, (J0)m,3k+1 = δm,k, and (J0)m,3k+2 =
(J0)m,3k+3 = 0, for all m and k. Then the Cramer-Rao error

bounds for each parameter can be obtained from the diagonal

elements of the inverse Fisher information matrix.

4. ERROR BOUNDS FOR PHYSICAL QUANTITIES

The error bounds derived in the previous section are for the

spectral line parameters Fk, ∆k, and ǫk, where both ∆k and

ǫk are measured in pixels. However the goal in spectroscopic

imaging is to estimate some physical quantities of interest

related to these spectral line parameters. Hence one would

generally be interested in the error bounds for these physi-

cal parameters (measured in physical units), rather than for

the spectral line parameters (measured in pixels). Moreover

the goal in instrument optimization is generally to minimize

the errors for some physical parameters with respect to de-

sign parameters. These require us to express the spectral line

parameters in terms of the physical quantities of interest and

design parameters.

We start by relating ∆k and ǫk to the physical quanti-

ties they represent, using the dispersion scale D. Dispersion

scale (also known as reciprocal dispersion) is the wavelength

range corresponding to a single pixel, and is measured here

in mÅ/pixel. (Low dispersion scale means large dispersion

in the instrument.) The primary physical quantities of interest

wk and vk, respectively denoting the line width in wavelength

units and the line-of-sight velocity, can then be expressed as

wk = D∆k ⇒ ∆k =
wk

D
(7)

and

vk =
c(Dǫk)

1000λ0
⇒ ǫk =

1000λ0vk
cD

(8)

Here wk is measured in mÅ, vk is measured in km/s, c de-

notes the speed of light in km/s, and λ0 represents the cen-

tral wavelength in Å. (The second relation is obtained using

the Doppler shift formula: ∆λ
λ0

= v
c

. This gives the relation

between the line-of-sight velocity v and the resulting wave-

length shift ∆λ of the central wavelength λ0.)

The error bounds for Fk, wk, vk can be obtained from the

error bounds for Fk, ∆k, ǫk by using the above relations and

performing a transformation of the parameters. Let the new

parameter set be θ′ = (Fk, wk, vk). With the old parameter

set being θ = (Fk,∆k, ǫk), the relation between these two

parameter sets is given by

θ = (Fk,
wk

D
,
1000λ0

Dc
vk) = g(θ′). (9)

Then the Fisher information matrix for the new parameter set

θ′ = (Fk, wk, vk) can be obtained by using the error propa-

gation formula [8] as follows:

I(θ′) =

(

∂g

∂θ′

)T

I(g(θ′))
∂g

∂θ′
(10)

where I(g(θ′)) is the Fisher information matrix for the old

parameter set (given in (6)), and the Jacobian matrix ∂g
∂θ′

is a

block diagonal matrix with each block given by





1 0 0
0 1

D
0

0 0 1000λ0

Dc



 .

A few remarks are in order at this point. First, the new

Fisher information matrix and the corresponding error bounds

for the physical parameters are functions of the instrument de-

sign choices, consisting of the spectral orders to be measured,

SNR level, dispersion scale, and the number of pixels. All of

these design choices are significant in determining the amount

of information available from the slitless data, and their effect

on the precision of estimates can be explored using the er-

ror bounds. Second, the given formulation is general enough

to allow consideration of other physical quantities of interest

and design parameters.

5. NUMERICAL EXAMPLE

Thus far, the analytic framework developed is quite general

and can be applied to any particular application involving

spectroscopy. In this section, we illustrate the usefulness of

these concepts for an application in EUV solar spectroscopy.

We consider the measurements of an EUV emission line

emitted from the Sun, with a central wavelength of λ0 = 335
Å. Our goal is to explore the effectiveness of slitless spec-

troscopy to this application, and to find the optimal design

choices for the spectral orders, dispersion scale, SNR, and

number of pixels. The optimality criteria should be chosen

based on the science objectives of the experiments performed

with the instrument. As an example, we consider here a com-

monly used criterion: the one that minimizes the average of

standard deviations for Fk, wk, and vk. We compute this op-

timality criterion as a function of one design parameter while

fixing the others.

Various observing scenarios with three or more spectral

orders are considered in the simulations. The cases with

less than three orders are not included because in these cases

the Fisher information matrix is observed to be highly ill-

conditioned. This indicates that these measurement config-

urations suffer from instability issues [9], and hence cannot

yield stable estimates of the physical parameters. In our anal-

ysis we only consider the instances with well-conditioned

Fisher information matrix so that we can reliably invert the

matrix to compute the error bounds.

The spectral line parameters are generated randomly ac-

cording to their modeled distributions in solar spectroscopy.

Although the focus of this paper is CRB for unbiased estima-

tors, our next intent is to extend these bounds for maximum a

posteriori estimators. For this reason, the numerical averages

of the bounds are computed for a total of 50 random parame-

ter sets. Figures 1, 2 and 3 show these results.
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Fig. 1: Average standard deviations for Fk, wk, and vk as a function of the dispersion scale with SNR = 100 and M = 100.
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Fig. 2: Average standard deviations for Fk, wk, and vk as a function of SNR with D = 65 mÅ/pix and M = 100.
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Fig. 3: Average standard deviations for Fk, wk, and vk as a function of number of pixels with D = 65 mÅ/pix and SNR = 100.

The plots provide important insights about how to opti-

mally operate this imaging spectroscopy. Here we note the

most important observations. First of all, optimal dispersion

range is similar for both the line widths and line-of-sight ve-

locities, and the weak trade-off can be handled depending on

the science goal. For integrated intensities, the error bounds

depend only on whether the 0th spectral order is measured or

not, and the SNR of this measurement. Furthermore, from the

expression of the Fisher information matrix, we already know

that the rms errors are proportional to ∼ 1/SNR. From the

plots, we observe that SNR values of larger than 200 yield

only slight improvements in errors.

When we compare the various observing scenarios with

different orders, the case with orders {0,+1,−1} operated

at a nearly-optimal dispersion appears to be the most cost-

effective one. In this case, additional fourth and fifth orders

provide almost no improvement for estimating integrated in-

tensities and line widths; but the additional fourth order yields

some improvement in velocity estimates. If operated in an

optimal regime, the performance of the slitless spectrograph

is comparable to the conventional method of slit spectrograph

(in terms of precision of the estimates), but with the additional

advantage of a large instantenous FOV.
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