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ABSTRACT

Pan-sharpening is a common post-processing operation for captured
multispectral satellite imagery, where the spatial resolution of im-
ages gathered in various spectral bands is enhanced by fusing them
with a panchromatic image captured at a higher resolution. Previ-
ously proposed pan-sharpening techniques operate on a per-channel
basis, sharpening each multispectral band independently based on
the panchromatic image, often in an ad hoc manner. In contrast with
most prior techniques, we formulate pan-sharpening as the problem
of jointly estimating the high resolution multispectral images to min-
imize the combined squared residual error in physically motivated
observation models of the low resolution multispectral and the high
resolution panchromatic images. To realize pan-sharpening using
our proposed formulation, we develop an iterative algorithm to solve
the joint minimization resulting in an overall algorithm with modest
computational complexity. We evaluate our proposed algorithm and
benchmark it against previously proposed methods using established
quantitative measures of SNR, SAM, ERGAS, Q, and Q4 indices.
Both the quantitative results and visual evaluation demonstrate that
the proposed joint formulation provides superior results compared
with pre-existing methods.

Index Terms— pan-sharpening, satellite imagery, image fusion,
spectral imaging

1. INTRODUCTION

For reasons of cost, bandwidth, and to maintain adequate image
quality in the presence of noise, satellite based multi and hyper spec-
tral image capture systems use on-board imaging sensors that vary
in spatial resolution: typical sensor configurations, capture a high
resolution panchromatic image spanning a wide spectral band and
lower resolution images for individual spectral bands. For applica-
tions using the satellite imagery, once data is received on the ground,
the spectral band images are post-processed to obtain versions that
match the higher resolution sampling of the panchromatic image.
This process, commonly referred to as pan-sharpening, merges to-
gether low resolution and spectral information captured in spectral
channels with high resolution detail from the panchromatic image.

Several image pan-sharpening methods have been proposed
in the literature. A majority of these techniques operate using a
component or subband substitution framework where the multi-
spectral and the panchromatic images are mapped into a trans-
form domain and in the transform domain, some component or
subband data of the panchromatic image is inserted or used to
replace the data in the multispectral image, and the inverse trans-
form is then applied to this modified transform domain spectral
image to obtain the pan-sharpened version. Common examples in
the substitution framework include: a) methods based purely on
“color”, i.e. channel transforms, such as intensity-hue-saturation
(IHS) substitution [1–3], Brovey transform, principal component
replacement, Gram-Schmidt transform [4], and b) methods based

on spatial transforms, such as the multi-scale wavelet decomposi-
tion replacement [5, 6], multiwavelet transform [7], and the curvelet
transform [8]. The substitution approach is largely ad hoc, although
some variants, such as the Gram-Schmidt transform, are motivated
by improved spectral consistency and the parameter choices in the
spatial transform based approaches can be motivated by the relative
spatial bandwidths of the capture bands. Besides the substitution
framework, pan-sharpening has also been addressed in a model-
based method that is spectrally consistent [9] and using a more
structured restoration approach to the problem [10]. Additional vari-
ants that do not fit into one of the pre-existing categories include,
compressive image fusion for pan-sharpening [11], dictionary learn-
ing based pan-sharpening [12] and smoothing filter-based intensity
modulation [13]. Studies comparing the different pan-sharpening
methods have also previously been presented in [14–18].

In this paper, we propose a new formulation for the pan-
sharpening problem. We pose the problem of estimating the high
resolution multispectral images, jointly, as the minimization of a
combined squared residual error in physically motivated observation
models of the low resolution multispectral and the high resolu-
tion panchromatic images. We then develop an iterative algorithm
to solve the minimization with modest computational complexity.
Compared with prior methods for pan-sharpening, the proposed ap-
proach presents novelty in the combination of three respects: a) the
pan-sharpening of the multispectral channels is performed jointly,
rather than independently for each channel, b) upsampling is explic-
itly incorporated in the formulation instead of utilizing interpolated
versions of the multispectral images to model the multispectral
observation, and c) the objective function that we minimize simulta-
neously imposes spectral and spatial consistency with the observed
data. Results benchmarking the method and comparing the proposed
method against the leading existing alternatives demonstrate its ad-
vantage: it offers superior performance in both visual comparison
and in numerical metrics used for assessment of quality.

The rest of this manuscript is organized as follows. Section 2
introduces our joint formulation of the pan-sharpening problem as a
minimization problem. Section 3 develops an iterative minimization
approach for solving the minimization in a computationally tractable
fashion. Experimental results obtained using the proposed algorithm
are presented in Section 4. Concluding remarks and a discussion
bring the paper to a close in Section 5.

2. JOINT FORMULATION OF PAN-SHARPENING

We begin with a physical model for the multispectral imaging sys-
tem. A spatio-spectral distribution r[χ, υ; λ] of light intensity is in-
cident upon the sensor image planes used for capturing the panchro-
matic and the multispectral images1, where the pair (χ, υ) represents

1Throughout this paper, we assume that the captured images are spatially
registered using suitable techniques.
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an orthogonal coordinate system for the sensor image plane aligned
with the sensor sampling grid and λ denotes the wavelength of light.
A panchromatic image is obtained, using a sensor sensitive to a wide
wavelength range2 and having a sampling interval X along each di-
mension, represented as a 2-D orthogonal lattice Λ. The captured
panchromatic image is represented as p[x], x ∈ Λ, where

p[χ, υ] = Hp[χ, υ] ∗

Z

r[χ, υ; λ]τp(λ)dλ, (1)

with Hp[χ, υ] and τp(λ) representing, respectively, the point spread
function (PSF) and the spectral responsivity of the panchromatic
imager, and ∗ representing the convolution operation. Simultane-
ously, K spectral images are also acquired via imagers sensitive to
narrow3 spectral bands on a sparser orthogonal sampling lattice Γ
having a spatial-sampling interval qX along each dimension, where
q > 1 so that the spectral channels have a lower resolution than the
panchromatic. These captured spectral images are represented by
ci[x], x ∈ Γ, for i = 1, 2, . . . K, where

ci[χ, υ] = Hi[χ, υ] ∗

Z

r[χ, υ; λ]τi(λ)dλ, (2)

with Hi[χ, υ] and τi(λ) representing, respectively, the point spread
function (PSF) and the spectral responsivity of the ith spectral im-
ager. When the panchromatic image p and the spectral images
{ci}

K
i=1 are acquired by the same satellite, q is typically an integer

factor and Γ ⊂ Λ, which is the situation we focus on in this paper.
Given the observed high resolution panchromatic image p[x], x ∈

Λ and the low resolution spectral images {ci[x]}K
i=1, x ∈ Γ, our ob-

jective is to recover high resolution spectral images {fi[x]}K
i=1 x ∈

Λ, where

fi[χ, υ] = Hi[χ/q, υ/q] ∗

Z

r[χ, υ; λ]τi(λ)dλ. (3)

Here, we assume that the PSF for the desired high resolution image
is defined by scaling the PSF for the actually captured image by a
factor (1/q) along each spatial direction, so that the corresponding
modulation transfer function, and effective bandwidth, are scaled by
a factor q, as is desirable when the sampling density is increased by
q (along each dimension).

The problem of estimating the high resolution spectral images
{fi[x]}K

1=1, x ∈ Λ, is a special version of the upsampling prob-
lem [19], where, unlike typical single image super-resolution, the
panchromatic image p[x], x ∈ Λ can provide information missing
in the captured spectral imagery making conventional regularization
unnecessary. To proceed to formulate the pan-sharpening problem,
we specify the observation model for the low-resolution observed
spectral images in the discrete domain as a low-pass filter hi[x] on
the lattice Λ followed by subsampling on the lattice Γ, which is illus-
trated in Fig. 1. Using the standard stacked notation [20, pp. 212],
we obtain the operation in matrix-vector format as

ci = Hifi + ηi (4)

where ci and fi are the stacked notation vectors representing ci[x]
and fi[x], respectively, and Hi is the rectangular matrix represent-
ing the low-pass filtering and sub-sampling, having essentially one
row for every q2 columns4, and ηi represents the noise in stacked
format. If the filter Hi[χ, υ] is an ideal band-limited filter matched

2The Landsat7 panchromatic imager, for example, covers the wavelength
range from 0.52 to 0.92 micrometers.

3Relative, to the panchromatic channel.
4Because our final implementations are all based on discrete filtering op-

erations, we leave unspecified the sizes of the images and therefore also the
corresponding vectors and matrices.

to the Nyquist bandwidth for the lattice Γ, the discrete domain obser-
vation model is exact [21]. Because ideal filters are non-realizable
and due to other limitations, practical systems use non-ideal filters.
The filters hi[x], i = 1, 2, . . . K can then be optimally designed as
in [22] using knowledge of Hi[χ, υ] provided as part of the system
specifications. For our formulation, analogous to the filters hi[x]
for the multispectral channels, we also define a filter h[x] that mod-
els a corresponding downsampling for the panchromatic image, i.e.,
h[x] ∗ p[x] approximates capture of a low resolution panchromatic
image on the lattice Γ via a filter with impulse response Hp[qχ, qυ].

hi[x]
ĉi[x]

fi[x] ci[x]↓ Λ → ΓNoiseηi[x]

Fig. 1. Discrete domain observation model for the low resolution
spectral image ci[x] in terms of the corresponding high resolution
image fi[x] .

We now formulate pan-sharpening as the estimation of {fi[x]}K
i=1

for x ∈ Λ by combining the low resolution and partly aliased in-
formation in {ci[x]}K

i=1, x ∈ Γ with the higher resolution spatial
information available in the panchromatic image p[x], x ∈ Λ,
exploiting, in the process, the spectral correlation between the
panchromatic and the spectral channels due to their overlap. The
specification of the spectral sensitivities of the panchromatic and
the individual spectral channels provides a model for the spectral
correlation, specifically, we write

τp(λ) =
K
X

i=1

wiτi(λ) + ζ(λ), (5)

where the summation represents the best attainable approximation
to the spectral responsivity τp(λ) for the panchromatic channel in
terms of the spectral responsivities {τi(λ)}K

i=1 for the K spectral
channels, treated as a basis, and ζ(λ) represents the residual error in
the approximation. The weights {wi}

K
i=1 can be obtained from the

specification of the spectral sensitivities via least squares regression.
If the filters Hp[χ, υ] and Hi[χ/q, υ/q] are identical, one can readily
see that the spectral relation in (5) induces a corresponding relation
for the high resolution images

p[x] =
K
X

i=1

wifi[x] + ζ[x], (6)

where the image ζ[x] is defined as the one corresponding to an im-
ager with a virtual spectral sensitivity ζ(λ), PSF Hp[χ, υ], and sam-
pling lattice Λ.

Finally, we formulate pan-sharpening as the joint optimization

f̀ = arg min
f̆

J (f̆ , c,p),

J ,

K
X

i=1

‖Hifi − ci‖
2 + ‖G(

K
X

i=1

ωifi − p)‖2,
(7)

where, we have use the stacked notation [20, pp. 212] to compactly
represent images as the corresponding vectors and the filtering (and
downsampling) operations as matrices, re-using the terms introduced
in (4) and adding the notation p to denote the panchromatic image
p[x] in stacked form, f̆ to jointly represent the complete set of high
resolution multi-spectral images {fi}K

i=1, and the matrix G denotes
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the complementary high pass filter for h[x] defined by g[x] = δ[x]−
h[x], where δ[·] represents the (Kronecker) delta function.

The first summation term in the objective function J represents
the data-fidelity requirement for the K observed spectral channels
under the observation model of Fig 1. The second term represents
the requirement for consistency of the K estimated high resolution
images with the spectral correlation model for the panchromatic im-
age in (6), where this requirement is imposed only on the images
high pass filtered components. The high pass filtering is beneficial
because the residual ζ[x] in (6) is ignored, it is helpful not to in-
clude in the second term lower frequency components that would
erroneously compete with the more accurate low frequency spectral
information included through the first summation. This idea, specif-
ically motivates the use of the complementary filter G for the corre-
sponding channel in the second term in objective function in (7).

Observe that, in contrast with most prior formulations of pan-
sharpening, the proposal in (7) poses the optimization jointly for the
K channels, instead of performing the pan-sharpening on a channel-
by-channel basis. Because this better enforces consistency across
the estimated high resolution spectral images, as we shall see in the
results in Section 4, it also leads to improved performance. To gain
some intuition into why this is the case, note that in our proposed for-
mulation because of the second term, high frequency spatial detail in
the panchromatic image p[x] must be appropriately apportioned to
the spectral channels and cannot be excessively re-utilized nor un-
duly ignored. Also, unlike most prior approaches, potential aliasing
in the process of mapping fi[x], x ∈ Λ to ci[x], x ∈ Γ is com-
prehended via the observation model. This allows for the aliasing to
be partly resolved via the high frequency information contributed by
the panchromatic image instead of being treated as noise in the data
fidelity term. Also note that the objective function combines the dual
goals of spectral and spatial consistency with the observed data.

3. ITERATIVE MINIMIZATION ALGORITHM

The optimization problem in (7) is challenging because of the large
number of variables5 corresponding to the number of spectral chan-
nels times the number of pixels in each high resolution spectral im-
age. To address this challenge, we develop a gradient-descent [23]
based iterative algorithm for optimization along with an efficient
filter based implementation. Specifically, via relatively straightfor-
ward algebra, we obtain the gradient of our objective function from
which, it follows that the gradient descent iteration with a numerical
step size ∆T can be written in per-channel (although still coupled)
form as

f
(n+1)
i =f

(n)
i − ∆T

“

H
T
i

`

Hif
(n)
i − ci

´

+ ωiG
T
G
`

K
X

j=1

ωjf
(n)
j − p

´

” ,

(8)
where ·T denotes matrix transpose, and the superscript ·(n) denotes
the iteration index. The algorithm is initialized by setting f

(0)
i to

the image obtained by interpolation of ci for i = 1, 2 . . . N , specif-
ically bicubic interpolation in our implementation. The iterations
are implemented as filtering and down/up sampling operations re-
sulting in an overall efficient implementation of the gradient descent
iterations. Space constraints prevent us from presenting the block di-
agram representation of the implementation and we limit ourselves

5For imagery from the IKONOS satellite imaging system, a typical set of
four spectral images, represented at the panchromatic resolution at typically
captured image sizes, has over 400 million pixels in aggregate.

to the ensuing verbal sketch of the implementation. The filtering
equivalents corresponding to G and the filtering and downsampling
interpretation for Hi have already been discussed. The operation
GT is a convolution matrix corresponding to the space-reversed PSF
g[−x]; if g is quad-symmetric (g[x] = g[−x]), as imposed by the
design constraint in [22], then GT = G. The matrix HT

i represents
up-sampling from Γ to Λ followed by convolution with the space
reversal filter hi[−x].

4. RESULTS

To evaluate our proposed pan-sharpening method, we use imagery
from the IKONOS multispectral imaging satellite [24], for which
details of the system specifications, including the spectral respon-
sivities and point-spread function characteristics are publicly avail-
able [25] along with a limited number of image datasets comprised
of registered pan and multispectral images at their native cap-
ture resolutions. Together these data provide an ideal test set for
evaluating our proposed algorithm and for benchmarking its perfor-
mance against previously proposed pan-sharpening alternatives. The
IKONOS satellite has five imaging channels: a panchromatic chan-
nel p[x] with a nominal ground resolution of X = 1m along each
dimension and spanning the spectral range6 from 525.8 through
928.5 nm and K = 4 multispectral bands with a nominal ground
resolution of 4X = 4m along each dimension (i.e., q = 4) and
having the following spectral bandwidths: (a) MS-1 (Blue) c1[x],
444.7 – 516.0 nm, (b) MS-2 (Green) c2[x], 506.4 – 595.0 nm, (c)
MS-3 (Red) c3[x], 631.9 – 697.7 nm, and (d) MS-4 (VNIR) c4[x],
757.3 – 852.7 nm. For processing and computation, the 11 bit pixel
data was converted to a floating point values by a linear mapping
with the digital value of 2047 represented as 1.0. Output images
were linearly mapped to an 8 bit 0 to 255 scale to facilitate viewing
and comparison on common 8 bit display systems. For computing
numerical benchmarks for comparing different methods, required
“ground truth” was generated in the standard manner [10, 26] by
lowpass filtering and downsampling the panchromatic and the spec-
tral data by a factor of 4 along dimension using the system MTF
parameters, where the lower resolution versions are then used as the
observations and the higher resolution panchromatic data serves as
the ground truth.

Required parameters for our pan-sharpening algorithm are ob-
tained as follows. Using the publicly available specification data for
the spectral sensitivities with least squares regression, we obtain the
weights7 w1 = 0.040, w2 = 0.175, w3 = 0.214 and w4 = 0.339,
for our iterative gradient descent algorithm the step size was empir-
ically determined to ∆T = 4 and to conservatively assure conver-
gence we used 100 iterations, after verifying that the improvement
in the objective function leveled off around 75 iterations.

We compare the performance of the proposed algorithm with
bicubic interpolation and two of the leading methods for pan-
sharpening: generalized IHS [3] and multiscale wavelet model [6],
where two versions of the latter are utilized with 3 and 4 levels,
respectively, for the wavelet decomposition. The methods are com-
pared using signal to noise power ratio (SNR) on a per channel basis
and also several of the multi-channel measures commonly used in
the remote sensing community. These latter measures are often
motivated by the need to maintain relative differences in the spectral
bands, which when viewing channels three at a time correspond
to color hues, and therefore also evaluate the spectral consistency

6Stated spectral bandwidths correspond to full-width at half-max.
7Although these weights are obtained purely from the spectral responsiv-

ity data for the sensors, they are close in values to those obtained in [27] by
regression over a set of sample images.

2161



Pan-sharpening SAM ERGAS SNR (dB) Qavg
32 Q4

32

Algorithm (deg) R G B NIR
Bicubic Interpolation 3.6 2.86 19.12 20.72 23.93 13.86 0.554 0.519
GIHS method 6.5 4.82 15.91 17.37 15.81 11.28 0.643 0.754
Multiscale Wavelet:
model M2 3 levels [6]

3.9 2.98 17.89 18.92 18.56 16.06 0.602 0.760

Multiscale Wavelet:
model M2 4 levels [6]

4.4 3.33 16.78 17.63 16.88 15.97 0.571 0.772

Proposed method 3.3 2.64 16.89 20.60 25.50 17.31 0.738 0.829

Table 1. Quantitative performance measures of different pan-sharpening methods for the IKONOS sample data images “China-Sichuan
58205 0000000.20001003” obtained from GeoEye [24]. The metrics are computed over the irregular shaped support for valid data in the
image file consisting of 2, 618, 026 pixels.

of the pan-sharpened images f̀i to the acquired spectral images ci

jointly across the different spectral bands. Specifically, the metrics
we use for our benchmarking are as follows. The spectral angle
mapper (SAM) defined as

SAM(f̀ , ĉ) ,
1

N

X

m,n

arccos

 

< f̀(m, n), f(m, n) >

‖f̀(m, n)‖2‖f(m, n)‖2

!

, (9)

where <, > denotes inner product of spectral components and N the
number of pixels in each image plane. SAM is expressed as an angu-
lar error which can be presented in degrees and smaller SAM values
are preferable. An alternative measure, sometimes preferred in the
remote sensing community, is the relative dimensionless global error
in synthesis (ERGAS) defined as

ERGAS(f̀ , f̂) , 100
1

qK

v

u

u

t

1

K

K
X

i=1

 

RMSE(f̀i, fi)

µ(fi)

!2

, (10)

where RMSE(, ) is the root mean squared error, K is the number of
image sub-bands, and µ(·) is the mean value of an image sub-band.
Finally, the universal image quality index Q defined in [28] and its
extension [29], Q4, that aims to estimate jointly the quality of four
band imagery using a quaternion representation, are also utilized for
the benchmarking. Both the Q and Q4 are averaged over sliding
window of size W × W , thus we indicate the window size by a
subscript as QW or Q4

W .

Table 1 compares the quantitative performance of the different
algorithms using the different quality measures, where the best score
for each measure is shown in bold. From the numerical measures we
see that the proposed technique does quite well. Results for other
image datasets in the GeoEye dataset [24] exhibit the same trend,
the proposed method consistently performs better than the alterna-
tive methods benchmarked here with respect to each of the measures,
with the exception of the SNR for the red channel, where it does a
little worse and the blue channel SNR, where it is comparable to the
best but not always the best. Because several of the measures vary
significantly over the different images (in particular SNR and SAM),
we do not present average performance over the images. The bet-
ter performance of the proposed technique with respect to the joint
measures ERGAS and Q4 highlights a benefit of the joint formu-
lation: while for individual channel pan-sharpening techniques, the
pan-sharpening of one channel does not exercise an influence on the
other, for the proposed method the joint formulation better imposes
the requirement of spectral consistency. Visual comparison further
emphasizes the advantage of the proposed technique over the other
alternatives, a small corresponding region of the ground truth and

the images obtained by three alternatives, is shown in Fig. 2 (for R,
G, B bands combined as a composite image). The images are best
viewed in the electronic version of the paper (hopefully unaltered by
post processing in the review process), at a high zoom.

(a) Bicubic Interpolation (b) Multi (4) level Wavelets [6]

(c) Proposed Method (d) Ground Truth

Fig. 2. Three (R, G, B) band presentation of a small cropped region
of the ground truth and images obtained by three of the algorithms.

5. CONCLUSION

A novel joint formulation is introduced for pan-sharpening as the
joint determination of the high resolution spectral images to mini-
mize a joint objective function that combines squared residual er-
ror in physically motivated observation models of the low resolu-
tion multispectral and the high resolution panchromatic images. A
computationally tractable iterative algorithm is introduced for solv-
ing the resulting optimization. Benchmark results8 demonstrate that
the algorithm offers an improvement over commonly employed prior
methods.

8We thank the Center for Integrated Research Computing, University of
Rochester, for making available computational resources required for obtain-
ing the results presented in this paper.
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