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ABSTRACT

Sparse representation is an active research area in the signal pro-
cessing and machine learning community in recent years. Recently,
sparse representation classifier was proposed for challenging classi-
fication tasks — it entails representing a testing sample as a linear
combination of all training samples which form an over-complete
dictionary. In this paper, we demonstrate that for challenging high-
dimensional classification tasks, appropriate dimensionality reduc-
tion is beneficial for sparse representation classifiers and it’s variants
— especially when some features are redundant and/or lack discrim-
inatory power. We propose a new dimensionality reduction algo-
rithm to optimize the performance of greedy pursuit algorithms (re-
quired in sparse representation classifiers) by projecting the data into
a space where the ratio of intra-class to inter class inner products are
maximized. We demonstrate the superiority of the proposed method
with standard hyperspectral imagery datasets — both in terms of im-
proved classification accuracy and a speed-up in the run-time.

Index Terms— Sparse Representation, Greedy Pursuit, Dimen-
sionality Reduction

1. INTRODUCTION

Sparse representation is an active research area in the signal process-
ing and machine learning community. In sparse representation, most
or all of the information of an unknown signal can be linearly rep-
resented by a small number of atoms in a “dictionary”. Based on
this theory, Wright et al. propose a sparse representation classifier
(SRC) for robust face recognition [1]. The central idea in SRC is to
represent the testing sample as a linear combination of all available
training samples (which form an over-complete dictionary) — most
of the nonzero or large value entries in the recovered coefficient are
expected to correspond to training samples having the same class
membership as the testing sample. The assumption of such an ap-
proach is that the testing sample approximately lies in the linear span
of the training samples from the same class. Experiments conducted
in [1] demonstrate that SRC performs well on the face recognition
problems under varying lighting conditions.

It is also hypothesized in [1] that the choice of features is not
critical when there are sufficient number of features available and
sparsity is exploited for the classification task at hand. However,
this may not always be the case, particularly when the input fea-
ture space possesses very high dimensionality (e.g. with hyperspec-
tral images). Further, some features may be redundant and/or all
features may not contain useful discriminative information. Tradi-
tional supervised and unsupervised dimensionality reduction algo-
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rithms such as Principal Component Analysis (PCA), Locality Pre-
serving Projection (LPP) and Linear Discriminant Analysis (LDA)
[2, 3], Regularized LDA etc. may not be optimal for classifiers ex-
ploiting sparsity — since the projection in these approaches does not
seek to exploit the underlying sparsity in the data.

In recent work, a few dimensionality reduction algorithms
aimed at further optimizing the SRC performance have been pro-
posed. Qiao et al. proposed a Sparsity Preserving Projection (SPP)
[4] method wherein the sparse reconstructive relationship of the
samples in the low dimensional subspace are still retained. Since
SPP does not utilize class-specific information, it usually lacks of
discriminatory power for classification problems. In [5], Lai et al.
developed a Global Sparse Representation Projections (GSPR) to
address this issue. GSPR aims at finding a linearly transformed
subspace where global sparse reconstructive relations of the samples
are preserved, and interclass samples’ separability is also maxi-
mized. In an attempt to optimize the performance of SRC, Lan et
al. and Yang et al. present sparse representation based Discrimina-
tive Information Exploring Transform (DIET) [6] and SRC steered
Discriminative Projection (SRC-DP) [7] respectively. The central
idea behind these methods is to project the data onto a space where
the ratio of reconstruction errors caused by inter-class samples to
intra-class samples are maximized. Since such methods directly
maximize the criterion function used in SRC, the performance of
SRC is expected to be improved in this projected space. However,
the underlying assumption for all of these methods is that the sparse
coefficients are recovered accurately. This is due to the fact that
the criterion functions of these methods directly use the recovered
coefficients to calculate the projection matrix. If the recovered co-
efficients are inaccurate, the performance of these dimensionality
reduction methods can be expected to be unreliable.

In this paper, we propose a new dimensionality reduction
method, namely Sparsity Promoting Dimensionality Reduction
(SPDR) to optimize the performance of greedy pursuit algorithms
such as Orthogonal Matching Pursuit (OMP) [8] and Subspace
Pursuit (SP) [9] that are commonly used to recover the sparse coef-
ficients. The key idea in SPDR is to project the data onto a subspace
where the ratio of intra-class inner products to inter class inner prod-
ucts are maximized. With such a projection, we expect the accuracy
of coefficients recovered by OMP or SP is improved, in a much
smaller dimensional space — which also significantly speeds up the
coefficient recovery process used in SRC and related algorithms.

Due to its wide application scope, SRC has been gained in-
creased attention in the hyperspectral image analysis community.
Owing to rapid advances in sensing technology, hyperspectral im-
agery is widely available and used for remote sensing, automatic
target recognition and surveillance tasks [10, 11]. Hyperspectral im-

2154978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



agery consists of densely sampled reflectance values over a wide
range of the electromagnetic spectrum. The high dimensionality,
though potentially useful, poses unique challenges for analysis tasks.
Further, for many practical HSI classification tasks, acquiring la-
beled ground-truth is very expensive and often hard to come-by.
Hence, robustness to the over-dimensionality and small-sample-size
problem is critical for an effective HSI classification algorithm. In
this paper, we validate the proposed method with two standard hy-
perspectral imagery datasets commonly employed in the hyperspec-
tral image analysis community for benchmarking. We demonstrate
the superiority of the proposed method at reducing the dimension-
ality when followed by some greedy pursuit algorithms by studying
the classification accuracy of variants of the SRC algorithm with the
proposed feature reduction algorithm.

The rest of this paper is organized as follows. In section 2, we re-
view the SRC classifier. In section 3, we present the proposed SPDR
feature reduction algorithm. We provide a description of the exper-
imental classification setup and describe our classification results in
section 4, and provide concluding remarks in section 5.

2. SPARSE REPRESENTATION CLASSIFIER

Let xij ∈ Rd represent the j-th training sample from class i, X =
[X1,X2, . . . ,Xc], where Xi = [xi1,xi2, . . . ,xini ] ∈ Rd×ni is
the i-th class training sample matrix, c is the number of classes, ni

represents the number of training samples from class i, and n is the
total number of training samples, n =

∑c
i=1 ni. In the context of

pattern recognition, our goal is to predict the label of any new testing
sample x ∈ Rd.

Traditional SRC assumes that a testing sample x ∈ Rd from the
i-th class approximately lies in the linear span of training samples
from class i. This can be represented as

x ≈ αi1xi1 + αi2xi2 + · · ·+ αinixini

= [xi1,xi2, . . . ,xini ][αi1, αi2, . . . , αini ]
T

= Xiαi (1)

where αi is a coefficient vector whose entries are the weights of the
corresponding training samples in Xi.

Since the label of the testing sample x is unknown, x needs to be
represented as a linear combination of all training samples X, which
can be formulated as

x = Xα (2)

where α = [α11, α12, . . . , αi1, αi2, . . . , αini , . . . , αcnc , ] is a coef-
ficient vector corresponding to all training samples. In an ideal case,
if the testing sample x belongs to i-th class, the entries of α are all
zeros except those related to the training samples for the i-th class in
X.

After calculating the sparse coefficient α, the residual of each
class can be calculated via

ri(x) = ‖x−Xiα̂i‖2, i = 1, 2, . . . , c (3)

where α̂i denotes the entries of the coefficient vector α associated
with the training samples from the i-th class. Finally, x is assigned
a class label i corresponding to a class that resulted in the minimal
residual.

Since SRC directly uses the recovered coefficient vector α to
determine the membership of the testing sample, accurate recovery
of α plays a key role in the efficacy of such a classification algorithm.
In practical image processing applications, solving (2) is typically
under-determined, one can employ one of many solutions that exist

for such a problem. To get the sparsest solution in (2), one can solve
the following optimization problem:

l0 : α̂ = argmin ‖α‖0, subject to Xα = x (4)

where the l0-norm ‖.‖0 counts the number of nonzero entries in α.
In the presence of some noise in the data, the equality con-

strained problem in (4) can be relaxed into two different inequality
constrained problems below:

l
′
0 : α̂ = argmin ‖α‖0, subject to ‖Xα− x‖2 ≤ σ (5)

l
′′
0 : α̂ = argmin ‖Xα− x‖2, subject to ‖α‖0 ≤ K (6)

where σ is the error tolerance and K is the sparsity level of the so-
lution. Unfortunately, solving these l0, l

′
0 and l

′′
0 norm problems are

NP-hard and require an exhaustive search through all possible com-
bination of the nonzero entries in α.

As is used in the emerging field of compressive sensing (CS),
such an NP-hard problem can be converted to an l1 norm problem
and efficiently solved by a linear programming (LP) known as ba-
sis pursuit (BP) [12] or convex programming techniques. It can also
be approximately solved by greedy pursuit algorithms such as OMP
and SP. The central idea of OMP is to select an atom that produces
the highest inner product with the residual of the signal at each it-
eration and stops when the residual of the signal is lower than some
predefined value σ or the number of selected atoms is higher than
the predefined sparsity level K. SP iterates in a similar fashion ex-
cept that it maintains K number of atoms at each iteration instead of
one. At the next iteration, K newly selected atoms are added in the
current list of atoms andK insignificant atoms are removed from the
list. After selecting the atoms, their corresponding coefficients can
be calculated by solving an appropriate least squares problem [13].

3. SPARSITY PROMOTING DIMENSIONALITY
REDUCTION

In this section, we will describe the proposed Sparsity Promoting Di-
mensionality Reduction (SPDR) algorithm. Since SRC directly uses
the recovered coefficients to predict the membership of the testing
sample, accurate recovery of coefficients can be expected to have a
siginicant influence on SRC performance. In the proposed SPDR
method, we wish to find a lower dimensional subspace via a projec-
tion that seeks to optimize the performance of greedy pursuit based
recovery methods such as OMP and SP. As we know, OMP and SP
select the atoms based on “similarities” (as measured by inner prod-
ucts) with the testing sample. Atoms producing large inner products
with the testing sample are likely to be selected. We hence hypoth-
esize that OMP and SP will achieve better recovery performance if
between-class samples (belonging to different classes) have large in-
ner products, and within-class samples (belonging to the same class)
have small inner products. Therefore, in this paper the criterion func-
tion J(W) for SPDR is chosen to maximize the ratio of within and
between class inner products in the projected space which are de-
fined below. Let us assume that W ∈ Rd̂×d is the projection matrix
of SPDR where d̂ is the reduced dimensionality.

J(W) =
Iw
Ib

(7)
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In (7), Iw and Ib are the within and between class inner products in
the projected space, and we define them as below.

Iw =

c∑
i=1

ni∑
j=1

(Wxij)
T (Wµi) (8)

Ib =
c∑

i=1

c∑
j=1;j 6=i

(Wµi)
T (Wµj) (9)

where µi =
∑ni

j=1 xij is the mean of the samples in class i.
The optimization process of finding the projection matrix W can

be mathematically solved as follows:

Ŵ = argmax
W

Iw
Ib

= argmax
W

tr[Iw]

tr[Ib]

=
tr[(Wx11)T Wµ1 + (Wx12)T Wµ1 + · · ·+ (Wxcnc)T Wµc]

tr[(Wµ1)T Wµ2 + (Wµ1)T Wµ3 + · · ·+ (Wµc)T Wµc−1]

=
tr[Wµ1(Wx11)T + Wµ1(Wx12)T + · · ·+ Wµc(Wxcnc)T ]

tr[Wµ2(Wµ1)T + Wµ3(Wµ1)T + · · ·+ Wµc−1(Wµc)T ]

=
tr[Wµ1x

T
11WT + Wµ1x

T
12WT + · · ·+ Wµcx

T
cnc

WT ]

tr[Wµ2µT
1 WT + Wµ3µT

1 WT + · · ·+ Wµc−1µT
c WT ]

=
tr[WÎwWT ]

tr[WÎbWT ]
(10)

where Îw and Îb are the within and between class outer products in
the original space, defined as:

Îw =
c∑

i=1

ni∑
j=1

µi(xij)
T (11)

Îb =

c∑
i=1

c∑
j=1;j 6=i

µj(µi)
T (12)

However this trace-ratio problem does not have a closed form
solution. We instead employ and solve for the corresponding ratio-
trace problem. Some other approaches to solve this trace-ratio prob-
lem can be found in [14, 15]. The conversion of the trace-ratio prob-
lem into a ratio-trace problem can be formulated as follows:

tr[WÎwWT ]

tr[WÎbWT ]
= tr[(WÎwWT )(WÎbWT )−1] (13)

Hence the problem of finding the projections that maximizes the cri-
terion function in (7) now reduces to a generalized eigenvalue prob-
lem of ΛÎbW = ÎwW, where the projection Ŵ are the eigenvec-
tors corresponding to the largest eigenvalues of diagonal matrix of Λ
whose diagonal elements are the eigenvalues.

4. EXPERIMENTAL SETUP AND RESULTS

In this section, we validate the efficacy of the proposed SPDR
algorithm on two benchmarking hyperspectral datasets. The per-
formance of SPDR is compared with baseline algorithms including
LPP, LDA, SPP, DIET and Standard SRC (S-SRC) (where no dimen-
sionality reduction is performed) — in all algorithms, the backend
classifier employed was SRC. The performance of these algorithms
are assessed by the overall accuracies as a function of training

sample size, feature size and their computational time. The recon-
structions methods adopted in SRC are based on OMP and SP in an
attempt to show that SPDR enhances the performance of these two
methods. All free parameters used in SPDR as well as the baseline
algorithms are determined by maximizing the classification accu-
racies by performing an exhaustive grid search over the parameter
space.

4.1. University of Pavia Data

The first experimental HSI dataset employed was collected using
the Reflective Optics System Imaging Spectrometer (ROSIS) sen-
sor [16]. This image, covering the University of Pavia, Italy, has 103
spectral bands with a spatial coverage of 610 × 340 pixels, and 9
classes of interests are considered in this dataset. A three-band false
color image and its ground-truth are shown in Figure 1. The mean
spectral signatures of the nine classes in this dataset are plotted in
Figure 2.

(a) (b)

Fig. 1. (a) False color image and (b) Ground-truth of the University
of Pavia Data
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Fig. 2. Mean spectral signatures of University of Pavia Data

The classification accuracies versus different number of training
samples for this dataset are reported in Table 1 and Table 2 us-
ing OMP and SP as the coefficient recovery methods respectively.
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Although it is a relatively simple urban classification problem, the
accuracies of SPDR are still higher than other baseline algorithms.
Table 3 describes the classification accuracies and testing times in
µs. in parenthesis obtained as a function of different feature size.
Since the number of features used in LDA is c−1 and S-SRC utilizes
all of the original spectral features, only one accuracy is reported for
each of these two algorithms. It can be seen from this table that the
classification accuracies of SPDR are consistently higher than other
baseline algorithms with varying number of dimensionality. Note
that the testing time of SPDR is much smaller compared with the
S-SRC since no dimensionality reduction is performed on it.

Table 1. Classification accuracies(%) obtained for the University of
Pavia Data using OMP as the recovery method.

Number of training samples per class
Algorithms 10 20 30 40 50
SPDR 71.57 74.73 77.31 77.87 79.10
S-SRC 70.94 74.26 76.40 77.15 78.57
DIET 71.11 74.52 76.58 77.37 78.83
SPP 70.80 74.42 76.31 77.08 78.74
LPP 11.57 53.02 61.20 64.54 66.94
LDA 47.30 55.20 62.66 65.75 67.28

Table 2. Classification accuracies(%) obtained for the University of
Pavia Data using SP as the recovery method.

Number of training samples per class
Algorithms 10 20 30 40 50
SPDR 72.45 75.67 77.97 78.61 79.63
S-SRC 71.40 74.93 77.11 77.90 78.60
DIET 71.66 75.13 77.24 78.07 78.94
SPP 71.18 74.95 77.00 77.86 78.75
LPP 11.70 54.77 62.79 66.15 68.64
LDA 47.97 56.20 63.95 67.08 69.20

Table 3. Classification accuracies(%) and testing times (µs) in
parenthesis obtained for the University of Pavia Data as a function
of feature size.

Number of features
Algorithms 10 20 30 40 50
SPDR 78.18 (1.9) 78.37 (1.4) 78.50 (4.4) 78.57 (8.6) 78.57 (13.6)
S-SRC 78.57 (13.7)
DIET 75.14 (8.0) 78.07 (8.9) 78.47 (10.2) 78.53 (11.9) 78.64 (16.1)
SPP 31.87 (7.6) 39.39 (7.1) 57.62 (9.4) 64.96 (11.0) 67.67 (11.9)
LPP 64.83 (5.0) 52.86 (5.0) 44.02 (7.1) 38.39 (9.9) 35.04 (10.7)
LDA 67.28 (1.3)

4.2. Indian Pines Data

The other dataset used in this work was acquired using NASA’s
AVIRIS sensor and was collected over northwest Indiana’s Indian
Pine test site in June 1992. The image represents a vegetation-
classification scenario with 145× 145 pixels and 220 spectral bands
in the 0.4- to 2.45-µm region of the visible and infrared spectrum
with a spatial resolution of 20 m. From the 16 different land-cover
classes in the image, 7 classes are discarded due to their insufficient
number of training samples. 20 noisy bands are removed in the scene
covering the region of water absorption and 200 spectral bands are
used in the experiments.

The classification results for this dataset using the algorithms
described above are reported in Table 4 and Table 5 with the same

experimental settings as the University of Pavia dataset. Since the In-
dian Pines dataset has a relatively large number of densely sampled
spectral bands, one can expect there to be substantial redundancies
in it. In such a high dimensional space, we can see that the pro-
posed SPDR outperforms other baseline algorithms especially when
the number of training samples is small. Also, the accuracies and
computational times versus different feature subspace dimension-
ality are reported in Table 6. Note that the overall classification
accuracy of the SPDR is even higher than S-SRC when the dimen-
sionality is reduced to 10.

Table 4. Classification accuracies(%) obtained for the Indian Pines
Data using OMP as the recovery method.

Number of training samples per class
Algorithms 10 20 30 40 50
SPDR 57.57 62.89 64.44 67.32 68.13
S-SRC 55.32 60.43 62.38 64.81 65.80
DIET 54.92 59.54 61.22 63.29 64.20
SPP 49.46 48.16 53.01 59.87 62.53
LPP 18.30 12.28 39.09 50.38 54.76
LDA 56.84 61.51 63.47 65.49 66.58

Table 5. Classification accuracies(%) obtained for the Indian Pines
Data using SP as the recovery method.

Number of training samples per class
Algorithms 10 20 30 40 50
SPDR 55.90 62.68 64.41 67.27 68.29
S-SRC 55.50 61.30 63.11 65.28 66.33
DIET 56.09 61.77 63.75 66.10 66.88
SPP 54.38 60.10 61.80 63.76 64.71
LPP 18.15 11.32 43.20 52.43 56.30
LDA 51.17 50.07 54.55 61.34 63.93

Table 6. Classification accuracies(%) and testing times (µs) in
parenthesis obtained for the Indian Pines Data as a function of fea-
ture size.

Number of features
Algorithms 10 20 30 40 50
SPDR 67.66 (7.8) 67.75 (7.6) 67.76 (7.8) 67.69 (7.8) 67.66 (7.8)
S-SRC 65.80 (14.6)
DIET 65.50 (5.8) 66.27 (6.2) 65.67 (5.6) 65.46 (5.8) 65.52 (5.2)
SPP 28.83 (4.4) 41.55 (6.1) 47.04 (4.8) 55.54 (5.3) 57.74 (5.3)
LPP 51.45 (3.5) 54.27 (3.1) 53.52 (5.0) 52.78 (5.4) 51.77 (6.2)
LDA 62.53 (3.8)

5. CONCLUSION

In this paper, a new projection based dimensionality reduction
method is proposed to optimize the performance of greedy pursuit
algorithms in a reduced dimensional space. The proposed algo-
rithm not only enhances the performance of SRC, but significantly
reduces the computational cost of invoking OMP or SP — signif-
icantly speeding up run-time (testing) with sparse representation
classifiers. We expect the proposed approach to provide similar
resuts when used in other classification tasks, such as EEG classi-
fication, face recognition etc., and we are studying this in ongoing
work.
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