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ABSTRACT

In this paper, we present a compressed sensing method for complex-
valued signals based on multiple measurement vector compressed
sensing model. The proposed method constrains the real and imag-
inary parts of the recovered signal to have the same sparsity profile.
It is applied to a compressed sensing through-the-wall radar imaging
problem. Experiments based on synthetic data shows that the pro-
posed method achieves lower reconstruction error than the existing
CS method.

Index Terms— Complex-valued, Compressive sensing, Multi-
ple measurement vector

1. INTRODUCTION

Over the past few years, compressed sensing (CS) has gained in-
creased interest and has provided a new framework for signal ac-
quisition without the constraint of Nyquist sampling rate. Com-
pressed sensing has shown that a signal or an image, which has a
sparse representation in a certain domain, can be reconstructed with
far fewer non-adaptive measurements than Nyquist sampling theo-
rem [1]. With the ability of sensing and compressing simultaneously,
compressed sensing has been applied to many radar imaging areas,
such as Ground Penetrating Radar (GPR) [2, 3], Synthetic Aperture
Radar (SAR) [4–6], Inverse Synthetic Aperture Radar (ISAR) [7,8],
and Through-the-Wall Radar Imaging (TWRI) [9–12]. Many sparse
recovery algorithms have been proposed to solve CS related prob-
lems for real-valued signals. Some of the sparse recovery algo-
rithms can cope with complex-valued signals, e.g., the optimiza-
tion package CVX developed by Grant and Boyd based on convex
programming [13, 14] and YALL1 package developed by Yang and
Zhang [16]. In [15], the authors proposed a general lp minimization
recovery algorithm for CS in which a smoothing constraint is applied
on the phase of the signal and a sparse transform is used for the data
to improve the signal recovery.

In order to use the existing sparse recovery algorithms for
complex-valued CS problem, the real and imaginary parts of the
measured input signal are decoupled and concatenated into a col-
umn vector. Similarly, the dictionary is also decoupled into real and
imaginary sub-matrices to generate a matrix which is four times the
size of its original size. The solution obtained from the sparse recov-
ery algorithm comprises the real and imaginary parts, arranged in a
similar manner as the measured input signal. This CS strategy has
been applied to many CS related problems, such as TWRI [9, 10],
SAR [17], channel estimation [18], and inverse scattering [19].
However, this strategy has a drawback is that the real and imaginary

parts of the recovered signal do not share a common sparsity profile.
This issue was mentioned by Ender who applied a standard simplex
algorithm to cope with this problem [20].

In this paper, we propose a CS strategy that constrains the real
and imaginary parts of the solution to share a common support. The
proposed strategy uses the row sparsity constraint of Multiple Mea-
surement Vector (MMV) in CS to force the real and imaging parts
of the solution to have the same sparsity profile. We evaluate its
effectiveness by applying the proposed CS method to compressed
sensing through-the-wall radar imaging, which deals with complex-
valued signals.

The remainder of this paper is organized as follows. Section 2
presents an overview of compressed sensing and the existing strategy
for converting from complex-valued to real-valued CS model. Sec-
tion 3 describes the proposed CS method followed by some simula-
tions. Application to TWRI is presented in Section 4. Experimental
results are presented in Section 5. Finally, a conclusion is given in
Section 6.

2. COMPRESSED SENSING

In this section, we briefly describe the existing strategy for solving a
complex-valued compressed sensing problem. Consider a complex-
valued signal x ∈ C

N and an orthornormal basis Ψ ∈ C
N×N , such

that x = Ψα, where α ∈ C
N is a sparse vector. The signal is con-

sidered to be sparse if it contains only K nonzero coefficients, where
K ≪ N , or to be compressible if its ordered set of coefficients de-
cays rapidly and the signal can be well approximated by just the first
K coefficients.

Compressed sensing shows that a signal that is sparse, or com-
pressible, in some basis can be acquired using a low-rate acquisition
process. The signal x is measured through the following model:

y = Φx+ e, (1)

where y ∈ C
M denotes the measurement vector, Φ ∈ C

M×N , M <
N , is the sensing matrix, and e ∈ C

M represents the observation
noise. A common approach to recover the original signal x from y

is to solve the so-called Basis Pursuit denoising problem given by

min
α

||α||1, subject to ||y − ΦΨα||2 ≤ ǫ, (2)

where ǫ is an upper bound of the ℓ2-norm of the noise. The CS
problem given in (2) can be solved if the sensing matrix satisfies the
Restricted Isometry Property (RIP). In the CS literature, there are
several types of sparse recovery algorithms that have been proposed
to solve this type of minimization problems. Most of them were
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developed for real-valued signals. Therefore, to apply an existing
real-valued spare recovery algorithm to a complex-valued signal, the
measured signal y and the dictionary D are decoupled into their real
and imaginary parts as follows:

D̃ =

[
ℜ{D} −ℑ{D}
ℑ{D} ℜ{D}

]
(3)

ỹ =

[
ℜ{y}
ℑ{y}

]
, (4)

and

α̃ =

[
αr

αi

]
, (5)

where D = ΦΨ is the dictionary, and ℜ{·} and ℑ{·} are the real and
imaginary operators, respectively. The vector α̃ is a concatenation of
the real αr and imaginary αi parts of the recovered signal. Here, this
decomposition is termed as single measurement vector (SMV) strat-
egy as the CS model contains only one measurement vector. Based
on this decomposition, the ℓ1-norm minimization problem can be
rewritten as

min
α̃

||α̃||1, subject to ||ỹ − D̃α̃||2 ≤ ǫ. (6)

The real and imaginary parts of the sparse solution obtained by solv-
ing (6) are not guaranteed to have the same sparsity profile. To en-
force a constraint on the real and imaginary parts of the sparse so-
lution, we propose to solve (6) as a multiple measurement vector
(MMV) problem.

3. PROPOSED COMPRESSED SENSING METHOD

Multiple measurement vector (MMV) is a natural extension of sin-
gle measurement vector (SMV) where a CS problem has several
measurement vectors with an over-complete dictionary. The MMV
model addresses the recovery of a set of sparse signal vectors that
share a common support. In other words, each column of the solu-
tion matrix has the same sparsity profile. By using this constraint,
we propose to solve (6) as a MMV minimization problem so that the
nonzero coefficients in the real and imaginary parts of the recovered
complex-valued signal share the same set of indices. Mathemati-
cally, the proposed CS method can be described as follows. First, the
measurement vector y is duplicated. Both measurement vectors in-
cluding the replicated one are decoupled and rearranged as columns
of the Y matrix:

Y =

[
ℜ{y} −ℑ{y}
ℑ{y} ℜ{y}

]
. (7)

The sparse matrix solution can be written as

Ω =

[
φr

1 φi
2

φi
1

φr
2

]
, (8)

where φr
1

and φi
1

are, respectively, the real and imaginary parts of
the solution for the first column of Y . Similarly, φr

2
and φi

2
are the

real and imaginary parts of the solution for the second column of Y .
This decomposition is termed as MMV strategy. Now, we can write

min
Ω

||Ω||1 , subject to ||Y − D̃Ω||2 ≤ ǫ, (9)

Then, a sparse recovery algorithm designed for MMV, such as, si-
multaneous Orthogonal Matching Pursuit (S-OMP) [21, 22] or M-
FOCUSS [23] can be used for signal recovery. The real and imagi-
nary parts of the recovered signal α⋆ can be calculated as

ℜ{α⋆} = (φr
1
+ φ

r
2
)/2, (10)

ℑ{α⋆} = (φi
1
− φ

i
2
)/2. (11)

To test its effectiveness, the proposed method is applied to the
recovery of a complex-valued signal. The complex-valued signal is
generated to have a length of N = 500 where 16% of the coeffi-
cients are nonzero. For the recovery of the signal, a dictionary of
size 200× 500 is designed with its complex-valued elements are in-
dependent and identically distributed variables drawn from a Gaus-
sian distribution N (0, 1). The measurement vector y is defined as
y = Dα and is corrupted by white Gaussian noise. OMP is used
as a sparse recovery algorithm in conjunction with the SMV strategy
and the proposed MMV strategy. The recovery performance of the
algorithm is measured in terms of the normalized mean square error
(NMSE) given by

NMSE =
||α −α⋆||2

||α||2
. (12)

The simulation was performed over 1000 runs and the indices of
the nonzero coefficients of the recovered signal were randomly cho-
sen for each run. The averaged normalized mean square error as a
function of the number of measurements and the SNR of the input
signal are shown in Figs. 1(a) and (b). Figure 1(a) shows the pro-
posed MMV strategy gives lower reconstruction error than the SMV
strategy when increasing the number of measurements. Using noisy
measurements, we show that the proposed MMV strategy is more
robust against noise than the SMV strategy, cf. Fig. 1(b). In the
following section, we apply the proposed CS method to compressed
sensing through-the-wall radar imaging.

( a )2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 000 . 5 11 . 5
N u m b e r o f m e a s u r e m e n t sN ormali zed meansquareerror S M V s t r a t e g yM M V s t r a t e g y

( b )0 1 0 2 0 3 0 4 0 5 0 6 000 . 511 . 52
S N RN ormali zed meansquareerror S M V s t r a t e g yM M V s t r a t e g y

Fig. 1. Reconstruction error of the SMV and the proposed MMV
strategies: (a) NMSE as a function of the number of measurements
and (b) NMSE as a function of the SNR of the measured signal.
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4. THROUGH-THE-WALL RADAR IMAGING

Through-the-wall radar imaging (TWRI) has been given much at-
tention recently due its wide range of applications in public safety,
law enforcement and military [24]. In order to achieve high res-
olution imaging, large signal bandwidth and array aperture are re-
quired, leading to an increase in data acquisition time. There is an
increasing interest in fast data acquisition and image formation for
TWRI to allow prompt actionable intelligence and to enable reli-
able situational awareness. To achieve this objective, compressed
sensing TWRI methods [9, 10] were developed. In these methods, a
real-valued sparse recovery algorithm in combination with the SMV
strategy was used for image reconstruction. In the following, the
signal model and compressed sensing TWRI are described.

4.1. Signal Model

In a stepped-frequency TWRI approach, a large bandwidth is
achieved by transmitting Mf narrowband signals of frequency,

fm = fm +m∆f, for m = 0, . . . ,Mf − 1, (13)

where f0 is the initial frequency and ∆f is the frequency step size.
Assuming that a Ma-element array of transceivers is used to inter-
rogate the scene behind the wall. The scene is divided into a rect-
angular grid of Nx by Ny pixels. Given P targets in the scene, the
stepped-frequency signal of the m-th frequency received at the n-th
antenna z(m,n) is given by

z(m,n) =

P∑

p=1

σp exp(−j2πfmτn,p), (14)

where n ∈ [0,Ma − 1], m ∈ [0,Mf − 1], σp is the reflection
coefficient of the p-th target, τn,p is the two-way propagation delay
of the signal from the n-th antenna to the p-th target. It is assumed
that we know the wall parameters, i.e., the wall thickness and dielec-
tric constant, and the received radar signal is free of the wall EM
signature by using a wall-clutter mitigation. After the acquisition
of all the data samples, delay-and-sum (DS) beamforming, a com-
mon image formation method, is used to reconstruct the scene. Let
N = NxNy denote the total number of pixels in the formed image.
The complex-valued of the q-th pixel can be computed as

I(q) =
1

MfMa

Mf−1∑

m=0

Ma−1∑

n=0

y(m,n) exp
(
j2πfmτn,q

)
, (15)

where q ∈ [1, N ], τn,q denotes the focusing delay applied to the
output of the n-th transceiver for the q-th pixel. The computation
of the focusing delay for TWRI can be found in [25]. With DS
beamforming, all the data measurements are required to form high-
resolution radar images, at the expense of increasing the data acqui-
sition time and data storage requirements.

4.2. Compressed Sensing Through-the-Wall Radar Imaging

Compressed sensing has been applied to reconstruct a radar image
accurately with few measurements. Since the number of targets is
far fewer than the number of pixels, the target space can be consid-
ered as sparse. Thus, the image formation problem in TWRI can be
formulated as a CS problem. Let si denote an indicator function,
defined as

sq =

{
σp, if a target p exists at the q-th pixel location;
0, otherwise. (16)

Using the indicator function, we define a column vector s =
[s1, . . . , sq], where q ∈ [1, N ] . We also arrange the measure-
ments given in (14) into a vector z ∈ C

M ,M = MfMa, by
concatenating all M measurements into a column vector:

z = [z(0, 0), . . . , z(Mf − 1,Ma − 1)]T , (17)

Therefore, Equation (14) can be rewritten as

z = Ψs, (18)

where Ψ ∈ C
M×N . Each element of the matrix Ψ is given by

Ψ(i, q) = exp(−j2πfmτn,q), (19)

with m = i mod Mf , n = ⌊i/Mf ⌋ and i = 0, . . . ,MfMa − 1.
Suppose that we select a few measurements using a measurement
matrix, Φ ∈ R

J×MN , (J < M ≪ N ), where J is the total num-
ber of selected measurements. Then, the measured data y can be
expressed as

y = Φz = Ds, (20)

where D = ΦΨ. It follows that (20) is an underdetermined system
of linear equations that has infinitely many solutions. However, it is
possible to recover the sparse signal s through compressive sensing
when the matrix D satisfies the Restricted Isometry Property (RIP)
[1]:

(1− δK)||s||22 ≤ ||Ds||22 ≤ (1 + δK)||s||22, (21)

where the sparse vector s has K nonzero coefficients and δK ∈
(0, 1). A small value of δK leads to better construction of the sparse
signal. It has been shown that to recover a K-sparse signal s ex-
actly or with high probability, the number of measurements J has to
satisfy

J ≥ cK log(W/K), (22)

where c is small constant and W is the dimension of the vector s [6].
With the measured data y and the dictionary D, the signal s can be
recovered from the solution of a convex optimization problem based
on ℓ1-norm:

min ||s||1 subject to ||y −Ds||2 ≤ ε, (23)

where ||s||1 =
∑

i
|si| and ε bounds the amount of noise in the

measured data.

5. EXPERIMENTAL RESULTS

The proposed CS method is compared with the existing CS method
on synthetic TWR data. For simulations, the TWRI scene comprises
three targets that are located at [0, 1], [−1, 2.5], and [1.5, 3] m
behind a homogeneous wall. Each target is represented by a group
of four by four pixels. The wall has a thickness of 0.15 m and a
dielectric constant of 7.6. A two meter line array containing 61 an-
tenna elements is placed at a standoff distance of 1 m from the wall.
Each antenna transmits and receives a stepped-frequency signal with
a bandwidth of 2 GHz centered at 2.5 GHz. The frequency step size
is set to 5 MHz, producing 401 frequency samples. We assume that
the wall backscatters have been removed from the radar returns us-
ing a wall-clutter mitigation method, such as background subtrac-
tion, spatial filtering [26], or the SVD-based wall clutter mitigation
method [27, 28]. Illuminating the scene with all the antennas and
frequencies, we have a set of 24,461 measurements, i.e., 401 fre-
quencies times 61 antenna locations. Based on compressive sensing,
a subset of these measurements is required to accurately recovery
the target space. Let us consider the target space be a square grid
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with 50 rows and 50 columns, i.e., an image of size 50× 50 pixels.
We use the target-to-clutter ratio (TCR) to measure the quality of the
formed image. TCR is computed as

TCR = 20 log

(
1

Nt

∑
q∈Rt

|I(q)|
1

Nc

∑
q∈Rc

|I(q)|

)
, (24)

where Rt is the target region, Rc is the clutter region, Nc and Nt are,
respectively, the number of pixels in the clutter and target regions.
To reconstruct the scene, we use 5% of the total data volume, where
the frequencies are randomly chosen and the antenna locations are
chosen equispaced across the array. Orthogonal matching pursuit is
used as a sparse recovery algorithm since it is a fast technique to
obtain a sparse solution. The stopping criterion for OMP was set
to 100 iterations. In other words, OMP only computes the first 100
nonzero coefficients of the solution. Figure 2(a) shows the image
reconstructed by DS beamforming based on the full data volume for
a noise-free scene with three targets behind the wall. Figures 2(b)
and (c) illustrate the images formed by the CS imaging method in
combination with the SMV strategy and the proposed MMV strat-
egy, respectively. It is clear that the existing SMV strategy produces
an image with many false target pixels. This is due to the fact that the
real and imaginary parts of the solution obtained from OMP do not
have the same sparsity profile. On the other hand, the proposed strat-
egy, which employs the row sparsity constraint of MMV CS model,
generates a radar image with few false target pixels. In terms of im-
age quality, DS beamforming achieves a TCR of 19.94 dB and the
CS imaging method with the SMV strategy gives a TCR of 25.43 dB.
Using the proposed MMV strategy, we obtain a TCR of 29.56 dB.

6. CONCLUSION

In this paper, a method for complex-valued CS problem was pro-
posed. The proposed CS method constrains the real and imaginary
parts of the solution to share a common support by using the row
sparsity condition of MMV CS model. For compressed sensing
TWRI, the proposed CS method, based on simulated data, produced
a radar image with fewer false target pixels than the existing CS
method using the same sparse recovery algorithm.
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