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ABSTRACT 

                                                                                                      
Compared with the traditional Discrete Wavelet Transform 
(DWT), DLWT (Directional Lifting Wavelet Transform) 
features better compressibility, interscale attenuation and 
intrascale directional clustering property for SAR (Synthetic 
Aperture Radar) amplitude images. In this work, a new 
Bayesian SAR amplitude image compressive sensing

CS algorithm based on DLWT (DLWT_TDC: 
DLWT_Tree_ Directional Clustering) is proposed which 
fully exploits interscale attenuation and intrascale 
directional clustering property of the DLWT coefficients. 
To exploit the intrascale clustering property more accurately, 
a new directionally and locally adaptive prior probability 
model is proposed for the three high frequency subbands. 
Experimental results show that DLWT_TDC can achieve 
the best reconstruction performance for high sampling rates 
0.5 to 0.9. We also observed that, compared with the DWT-
based CS reconstruction algorithm, DLWT-based CS 
reconstruction algorithm achieved better reconstruction 
performance at the typical 0.5 sampling rate.   
                                                                                                      

Index Terms— SAR, CS, DLWT, Bayesian

1. INTRODUCTION 

Compressive Sensing for SAR amplitude image has 
attracted significant interest in recent years. According to 
the fundamental theory of compressive sensing, assuming a 
P-dimensional non-sparse signal f , which is compressible 
in a wavelet basis represented by the matrix� :

1

P
xi ii

� ��
�

f                                                                       (1) 

The measurement process can be represented as: � ��y f

and ( )N PR N P�� ��� . When measurement matrix �
and sparse basis � satisfy the Restricted Isometry Property 
(RIP) condition, it can be measured randomly and 
reconstructed with deterministic method, and Bayesian 
statistical inference method[1]. He et al. [1] applies the CS 
reconstruction for natural images by exploiting  interscale 
dependency of DWT coefficients. However, these 
algorithms have not fully exploited the dependency of DWT 
coefficients, e.g., the intrascale dependency. Moreover, 
compared with DWT, DLWT coefficients achieve better 
compressibility, interscale attenuation and intrascale 
clustering property. DLWT has already been used to 

represent the complex SAR images and achieved high 
performance for complex SAR images compression [2]. 
However, to the best of our knowledge, DLWT has not been 
used for SAR amplitude image CS reconstruction based on 
our survey. Therefore, in the paper, a new DLWT-based 
Bayesian CS reconstruction algorithm (DLWT_TDC) is 
proposed by fully exploiting intrascale and interscale 
correlation of DLWT coefficients. 

The rest of the paper is organized as follows: in Section 
2, DLWT and DWT coefficients’ property are illustrated for 
SAR amplitude images. In Section 3, the proposed 
algorithm is presented in detail. Experimental results and 
performance analysis are presented in Section 4. Finally, 
conclusion is shown in Section 5. 

2. DLWT and DWT COEFFICIENTS’ PROPERTY 
ANYLISIS FOR SAR AMPLITUDE IMAGES 

For SAR amplitude images, we compare the differences in 
compressibility, interscale and intrascale dependency 
between DWT and DLWT. We test two 512 512� with 16 
bpp (bits per pixel) SAR amplitude images(as shown in Fig. 
1) obtained by the modulo operation with the real part and 
imaginary part of the complex SAR images downloaded 
from the Sandia National Laboratories of the United 
States[3]. Five scalar wavelet decomposition (including both 
DWT and DLWT) are performed and the biorthogonal 9/7 
filter (B9/7) is used in the DLWT decomposition. 

    
                (a) Img1                (b) Img2       

Fig.1. 512 512�  test images. 

2.1. K-term Nonlinear Approximation 

We employ K-term nonlinear approximation to show the 
sparse representation ability. Fig.2 plots the PSNR of the 
reconstructed image against the number of the sorted large 
amplitude coefficients for both DLWT and DWT. It is seen 
that DLWT outperforms DWT in terms of larger PSNR for 
the same number of the sorted large amplitude coefficients.  
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                            (a) Img1                        (b) Img2   
Fig.2. K-term nonlinear approximation performance. 

2.2. Interscale Attenuation Property  

The wavelet coefficients show the following interscale 
attenuation property: 1) the energy is concentrated to the 
low frequency subbands; 2) if a parent coefficient is 
insignificant, its children coefficients tend to be 
insignificant. We use energy distribution percentage of 
wavelet coefficients to compare the interscale dependency 
between DWT and DLWT. 

Table 1. Energy distribution percentage in each scale 

LL represents the low frequency coefficients and 
H5,H4,H3,H2 and H1 represent high frequency coefficients 
from scale 5 to scale 1, respectively. TABLE 1 shows that 
energy in LL, H5, and H4 subbands for DLWT is higher 
than that of DWT coefficients. In other words, for DLWT 
the coefficients are more concentrated in low frequency 
subbands, which shows that DLWT has better interscale 
attenuation property.  

2.3. Intrascale Clustering Property Analysis 

Wavelet coefficients have the following intrascale clustering 
property: 1) if the number of the significant coefficients in 
its neighboring �  block is bigger than threshold K, we 
impose the belief that wavelet coefficient is likely to be also 
significant whereas the opposite; 2) coefficients in different 
subband have different directional correlation. It is known 
that the HL, LH, HH subbands have better horizontal 
correlation, vertical correlation, and diagonal correlation, 
respectively. Thus, we employ � , �  and 
� neighboring block for HL,LH and HH subbands, 

respectively (as shown in Fig. 3). Take HL �
neighboring block(Fig.3(a)) for example, there are 14 
wavelet coefficients among the preserved significant 
coefficient ,i ja , where i and j denote the rows and columns 
of the image, respectively. Then, if the number of 
significant coefficients for the 14 coefficients is bigger than 
a setting threshold 10, we regard it as a cluster. The 

threshold is determined on the basis of a large number of 
experiments. In the proposed algorithm, the threshold for 
� � �  neighboring block is set as 

10,10,6 respectively.

(a) HL �              (b) LH �         (c) HH �
Fig.3. Neighboring block. 

We count the number of clusters in wavelet-domain with 
5-level transform of DLWT and DWT for various numbers 
of significant coefficients K in the K-term nonlinear 
approximation, for the 4 images in Fig.1. Then the cluster 
degree of the two transforms is defined as follows: 

deg
K

cluster ree
C

�                                     (2) 

where C is the number of clusters. For the same K , smaller 
cluster degree means the coefficients have more clustering 
property. Fig.4 plots the cluster degree against the number 
of preserved significant coefficients K for the 2 images in 
Fig.1, for both DLWT and DWT. It is seen that DLWT 
outperforms DWT in terms of better clustering property. 
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(a) Img1                               (b) Img2       
Fig.4. Comparison of clustering property between DWT and 
DLWT. 

3. BAYESIAN SAR AMPLITUDE IMAGE CS BASED 
ON DLWT 

In this section we propose a Bayesian CS algorithm for 
SAR amplitude images. We first establish a prior 
probability model which fully exploits wavelet coefficients’ 
dependency. In this work, we employ the spike-and-slab 
prior model [4], given as follows,

-1(0,(1 ) 1, 2,- ) (0) ,+ i Psxi i i 	
 � 
 �� ��               (3) 

~ ( , ) , 1, 20 0Gamma c d s Ls	 � �                                  (4) 

-| ), 1( , nn 		 I� � �xy x                                               (5) 

~ ( , )0 0Gamma a bn	                                                        (6) 

where xi denotes the ith wavelet coefficient and P is the 
number of the wavelet coefficients. In the following we 
elaborate the model described by equation (3). (0)� is a 

Test

images 

Represen- 

tation

Scale 

LL LL LL LL LL LL 

Img1
DLWT 0.4002 0.0857 0.1104 0.1423 0.1779 0.084 

DWT 0.3609 0.0569 0.0723 0.1380 0.2413 0.130 

Img2 
DLWT 0.2538 0.1438 0.1774 0.1430 0.1887 0.0934

DWT 0.2818 0.0490 0.1150 0.1598 0.2390 0.1553
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point mass concentrated at zero modeling insignificant 
coefficients; the second component is a zero-mean Gaussian 

distribution with variance -1
s	  . i
 denotes the probability 

of the significant coefficients. -1
n	 represents the unknown 

noise variance. (., .)Gamma  and (., .)Beta  are the Gamma

and Beta functions, respectively, and 0a , 0b , 0c and 0d are 
the hyper-parameters.   
   The TSW-CS reconstruction algorithm [1], which uses 
DWT as sparse representation for natural images, only 
exploits the interscale attenuation property of the wavelet 
coefficients. In this paper, we propose the following model 
for 
 i based on whether the parent is significant and the 
number of significant coefficients in the neighboring block. 
More specifically, we have the following model, 

1
0,0 2 0, , ( , ) , ,
0,1 2 0, , ( , ) , ,
1,0 2 0, , ( , ) , ,
1,1 2 0, , ( , ) , ,

if sr
c dif s L x insignificant xs i b pa s i s i b
c dif s L x insignificant xs i b pa s i s i bi
c dif s L x significant xs i b pa s i s i b
c dif s L x significant xs i b pa s i s i b
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� � , 1,0 0 sr rBeta e fr
 ��                                                     (8) 

� �
 � ��              (9) 
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         (11) 

� �
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        (12) 

where ( , )xpa s i  and , ,
c d
s i bx � denote the corresponding parent 

coefficients in the next level and the neighboring block 
coefficients of the subband � �, ,b HL LH HH� at the same 

scale, respectively; r
 denotes the probability of the 

significant coefficients xi  in the biggest scale. 

The hyper-parameters 0a 0b 0c 0d

0
re , 0

rf , , , , , , , ,

are set respectively as follows: 
-6= = = =100 0 0 0a b c d � �, = 0.9,0.10 0 1

r re f P�� �� �                  (13) 

� � �� �� �                         (14) 

� � �� �� �       (15) 

� � �� �� �                           (16) 

where ps and p  represent the number of wavelet 
coefficients in scale s(1 s L� � ) and the total number of 
wavelet coefficients ,respectively. 

4. EXPERIMENTAL RESULTS 

We test the performance of the DLWT based CS algorithms 
for real SAR amplitude images. We compare the efficiency 
of DLWT_TDC with that of DLWT_T which only uses 
interscale dependency of DLWT coefficients and that of the 
DLWT_IID which assumes the DLWT coefficient obeying 
the independently identical distribution (IID). Moreover, we 
compare performance with MS-BCS-SPL algorithm[5]
which uses a dual-tree DWT (DDWT) as the sparsity 
transform and blocks of sizes Bl = 2,4,8,16 for 
decomposition levels l = 1, 2, 3,4 respectively (l = 4 is the 
highest-resolution level). To accelerate the experimental 
speed, we cut the images in Fig.1 into two 16 bpp test SAR 
amplitude images with size 128 128� , as shown in Fig.5. 
Four-level DLWT with B9/7 filter is performed at different 
sampling rates for the four test images in the experiments. 

(a)Img1 (257:384,1:128)        (b)Img2(385:512,1:128)                
Fig.5. 128 128� test images 

4.1. Performance of DLWT-based CS Algorithm at 
Different Sampling Rates 

Fig.6 plots the PSNR of the reconstructed image against the 
sampling rates 0.1 to 0.9 for the two images, for the three 
Bayesian model-based CS reconstructions with DLWT. 
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                    (a)  Fig.5(a)                                 (b)Fig.5(b)  
Fig.6. PSNR percent� diagram at different sampling rate. 

From Fig.6, it is seen that DLWT_TDC shows the best 
reconstructed image quality among all DLWT-based CS 
schemes for high sampling rate 0.5 to 0.9. Let us see the 
sampling rate of 0.7. Compared with DLWT_T algorithm, 
DLWT_TDC can improve PSNR up to 2.25dB. Compared 
with DLWT_IID algorithm, DLWT_TDC can improve 
PSNR up to 3.11dB. Compared with MS-BCS-SPL 
algorithm, DLWT_TDC can improve PSNR up to 2.39dB. 
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This is because DLWT_TDC fully considers the inter- and 
intra-scale dependency of DLWT coefficients. 

Note that, from Fig.6, when the sampling rate is lower 
than 0.4, the PSNR of DLWT_TDC and DLWT_T almost 
coincide with each other. This is due to the fact that at the 
lower sampling rate, the number of the reconstructed 
wavelet coefficients is small and thus more independent, 
and thus the improvement of the DLWT_TDC is negligible. 
The performance gain of the DLWT_TDC is more 
significant for the sampling rate higher than 0.4. Among the 
three DLWT-based Bayesian CS reconstruction schemes, 
DLWT_TDC and DLWT_T, the algorithms exploiting the 
dependencies, show better reconstruction performance 
compared with that of DLWT_IID.

To intuitively show the impact on the estimation of the 
wavelet coefficients probability distribution when we add 
inter- and intra-dependency into reconstruction algorithm, 
the   probability distributions of the wavelet coefficients for 
test image Fig.5(a) is shown in Fig.8 at 0.7 sampling rate. 
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Fig.7. The original DLWT wavelet coefficients.
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             (a) DLWT_TDC                                (b) DLWT_T
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Fig.8. The posterior probability distributions of three Bayesian CS 
reconstruction algorithms. 

Fig.7 shows the original wavelet coefficients of the test 
image shown in Fig.5 (a). Fig.8 shows the posterior 
probability distribution where x axis denotes the location of 
wavelet coefficients and y axis denotes the probability of the 
significant coefficients. 

As illustrated in Fig.8 (c), the significant wavelet 
coefficients’ probability is concentrated on 0.5. This is due 
to the fact that we assume the wavelet coefficients obey the 
independently identical distribution. From Fig.8 (b) we can 
see that if the probability for significant parent coefficients 
is small, the probability for its significant children 

coefficients is much smaller when we only consider the 
interscale attenuation property in reconstruction algorithm. 
However, from Fig.7 we can see that although the parent 
coefficient is small, its children coefficients are not always 
small. Thus if we only consider the interscale attenuation 
property in CS reconstruction algorithm, we cannot give 
accurate model of the wavelet coefficients. Whether a child 
coefficient is significant or not is not only determined by its 
parent coefficient but also by the neighboring block 
coefficients when we fully exploit interscale attenuation and 
intrascale directional clustering. Compared with the original 
wavelet coefficients distribution in Fig.7, we can see that the 
probability distribution in DLWT_TDC can describe the 
location of wavelet coefficients more accurately as 
illustrated in Fig.8(a).  

4.2. Comparison between DWT and DLWT 

Finally we compare the DLWT- and DWT-based CS 
algorithm. TABEL 2 shows the PSNR values for the three 
CS reconstruction algorithms based on DWT and DLWT at 
the sampling rate 0.5. From TABEL 2 we can see that the 
DLWT-based CS algorithms show higher reconstructed 
image PSNR than the DWT-based CS counterparts just as 
illustrated in Section 2. 

Test
image 

IID T TDC 

DLWT DWT DLWT DWT DLWT DWT 

Fig5(a) 63.306 62.5353 65.3473 64.0339 65.774 64.7702

Fig5(b)       66.8935 66.2486 68.2425 67.2035 69.2834 68.1942

Table 2.Comparison between DWT- and DLWT- based algorithms

5. CONCLUSION 

We have adopted DLWT as sparse representation for SAR 
amplitude images to achieve better compressibility, 
interscale attenuation property and intrascale clustering 
property. We have proposed a novel DLWT-based Bayesian 
CS reconstruction algorithm, which fully exploits the 
interscale attenuation property and intrascale directional 
clustering property. The experimental results show 
correctness and effectiveness of the proposed algorithm. 
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