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ABSTRACT
In this paper, we present a novel abundance estimation
method for the generalized bilinear model (GBM) via sparse
representation for hyperspectral imagery. Because the GBM
generalizes the linear mixture model (LMM) by introducing
an additional bilinear term, our sparsity-based abundance es-
timation is performed by utilizing two dictionaries—a linear
dictionary containing all the pure endmembers and a bilinear
dictionary consisting of all the possible bilinear interaction
components. Because the components within the bilinear
term are also linearly combined, by employing a composite
dictionary made up by the concatenation of the linear and
bilinear dictionaries we can reformulate the bilinear prob-
lem in a linear sparse regression framework. In this way,
the abundance values are estimated from the sparse codes
only associated with the linear dictionary. To further improve
the estimation performance, we incorporate the joint-sparsity
model to exploit the spatial information in the data. The
experiments demonstrate the effectiveness of the proposed
algorithms on both synthetic and real data.

Index Terms— Abundance estimation, hyperspectral im-
agery, bilinear model, sparse representation

1. INTRODUCTION

Due to the low spatial resolution of imaging sensors, spectral
unmixing, which consists of pure endmember identification
and the abundance estimation [1], is a major issue in hyper-
spectral imagery [2, 3]. The identification problem is usu-
ally solved by an automatic endmember extraction algorithm
such as the N-Finder [4] or the Vertex Component Analysis
(VCA) [5]. Based on the extracted endmembers, the LMM is
usually applied for abundance estimation due to its simplicity
and analytically tractable solution as in [6, 7]. Nonetheless,
as pointed out in [2], due to the wide existence of non-linear
effects such as photon scattering, the LMM may not be an
appropriate model in many practical situations. To overcome
these inherent limitations, the GBM has recently been pro-
posed and well studied in [8] where it generalizes the LMM
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by introducing a bilinear term counting for the multipath ef-
fects.

Motivated by the recent research [9, 10], we present a
novel method for solving the GBM based abundance esti-
mation problem via sparse representation. Besides the lin-
ear dictionary made up of all pure endmembers, we consider
a bilinear dictionary consisting of all second-order endmem-
ber interaction components counting for the bilinear term in
the GBM. We concatenate the linear and bilinear dictionaries
together to form a composite dictionary. Because the com-
ponents within the bilinear term are also linearly combined,
based on the proposed composite dictionary the overall bi-
linear problem can be reformulated in a linear sparse regres-
sion framework. The new sparse recovery problem can still
be efficiently solved by an l1-minimization algorithm such
as the alternating direction method of multipliers (ADMM)
[11]. Once the sparse code for each single measurement vec-
tor (SMV) has been obtained, the abundances are estimated
from the sparse codes associated with the linear dictionary.
Moreover, as the pixels in hyperspectral images are usually
highly correlated in a small neighbourhood, we further in-
troduce a joint-sparsity model [12] to enforce the represen-
tations of the multiple measurement vectors (MMV) to share
the same support set. The joint-sparsity model further exploits
the spatial information in the data, thus it shows an improved
performance.

The paper is organized as follows. In Section 2 we discuss
about the relation of our proposed method to prior work. The
mixture models and the algorithms are presented in Section
3 and 4, respectively. In Section 5, we demonstrate the pro-
posed algorithms with some experiment results. Finally, we
concludes the paper in Section 6.

2. RELATION TO PRIOR WORK

Because every endmember does not contribute to all the pix-
els in the scene, sparseness is an important property of hy-
perspectral imagery [13]. To utilize this property, Guo et. al.
[9] has proposed an l1-minimization based abundance esti-
mation algorithm. Similar to this method, Iordache et. al.
[10] proposed a sparse unmixing algorithm which utilizes a
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pre-selected over-complete USGS spectral library1. Because
of the l1-norm regularization, they produce sparser and more
stable solutions than the other state-of-the-art algorithms. But
these algorithms are developed for the LMM which cannot
effectively deal with the non-linearities caused by the multi-
layer light scattering effects. In this paper, we extend their
work [9, 10] to the GBM based abundance estimation prob-
lem to deal with bilinear mixtures. Moreover, the joint spar-
sity model is further introduced to exploit the spatial informa-
tion in the data.

3. MIXTURE MODELS

Suppose that y ∈ RL is an observed mixed pixel of R pure
endmembers with L spectral bands. We assume that the dic-
tionary A = [a1,a2, ...,aR] is a L×R matrix in which each
column ar ∈ RL (1 ≤ r ≤ R) is a pure endmember vec-
tor. Let x ∈ RR be an abundance vector associated with the
observed pixel y.

3.1. Linear Mixture Model

The physical assumption underlying LMM is that each inci-
dent photon interacts with only one earth surface component,
and that the reflected spectra are not scattered. Therefore,
they do not mix before entering the HSI sensor. In this case,
the model can be described as

y =

R∑
i=1

aixi + n = Ax + n (1)

where n ∈ RL is an additive white noise sequence with vari-
ance σ2, denoted as n ∼ N (0, σ2I). To be physically mean-
ingful, the abundance vector x has to satisfy the abundance
non-negative constraint (ANC) and the abundance sum-to-
one constraint (ASC)

ANC: xr ≥ 0, ∀r ∈ 1, 2, ..., R,

ASC:
R∑
r=1

xr = 1.
(2)

3.2. Generalized Bilinear Mixture Model

Accounting for the presence of multiple photon bounces by
introducing an additional bilinear term to the LMM, the gen-
eralized bilinear model (GBM) [8] assumes that the observed
pixel can be expressed as

y = Ax +

R−1∑
i=1

R∑
j=i+1

γijxixjai � aj + n (3)

1http://speclab.cr.usgs.gov/spectral-lib.html

where 0 ≤ γij ≤ 1 is a coefficient that controls the interac-
tion between the i-th and j-th endmembers and the symbol �
denotes the Hadamard product operation.

The constraint on the abundance x is the same with LMM.
Notice that GBM degenerates to LMM when γij = 0, (1 ≤
i, j ≤ R, i 6= j).

4. SPARSE ABUNDANCE ESTIMATION

4.1. Linear Sparse Regression for Abundance Estimation

Recent research in [9, 10] shows that the abundance estima-
tion problem can be formulated as a sparse regression prob-
lem. Specifically, with a given dictionary A and a mixed pixel
y, we can formulate the problem as

min
x
||x||0, s.t. ||y −Ax||2 ≤ δ, x ≥ 0, 1Tx = 1 (4)

where || · ||0 denotes the l0-norm which is defined as the num-
ber of non-zero entries in the vector of interest, and δ ≥ 0
is the error tolerance level due to noises and various mod-
elling errors. This problem is not convex and generally NP-
hard to solve. Instead, if the solution is sufficiently sparse, it
can be relaxed to a linear programming problem by replac-
ing the l0-norm with the l1-norm. However, with the ASC
and ANC the l1-norm of x remains as a constant equalling to
unitary, rendering the entire l1-minimization problem mean-
ingless. Therefore, in [9, 10], they suggest to relax the ASC
and solve problem as follows

min
x

1

2
||y −Ax||22 + λ1||x||1, s.t. x ≥ 0 (5)

where ||x||1 =
∑R
i=1 |xi| and λ1 > 0 is a scalar regulariza-

tion parameter. This optimization problem is convex and can
be solved by the l1-minimization techniques. In this paper,
we adopt the non-negative SMV-ADMM algorithm (named
CSUnSAL+ in [10]) for its simplicity, efficiency and robust-
ness.

4.2. Extension to Generalized Bilinear Mixture Model

A close examination of (3) reveals that GBM can be seen as
a LMM with R original and R∗ = 1

2R(R − 1) correlated
endmembers. More specifically, by considering each second-
order spectral term ai�aj(1 ≤ i < j ≤ R) as a new spectral
components associated with fraction γijxixj , the model can
be rewritten as a linear combination of all the spectra

y =

R∑
k=1

xkak +

R∗∑
l=1

elbl + n (6)

where

el = γijxixj , bl = ai � aj ,

l = j +
(2R− i− 2)(i− 1)

2
, 1 ≤ i < j ≤ R.

(7)
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If we define the bilinear dictionary and its corresponding
bilinear abundance representation as B = [b1,b2, . . . ,bR∗ ] ∈
RL×R∗

and e = [e1, e2, . . . , eR∗]
T ∈ RR∗

, respectively, then
we can rewrite (6) as

y = Ax + Be + n

= Mφ+ n (8)

where M = [A,B] ∈ RL×(R+R∗) is a composite dictionary
and φ =

[
xT , eT

]T ∈ RR+R∗
is the corresponding com-

posite representation. Therefore, the bilinear problem can be
transformed and solved in the linear sparse regression frame-
work by

min
φ

1

2
||y −Mφ||22 + λ′1||φ||1, s.t. φ ≥ 0 (9)

where λ′1 > 0. The problem can still be efficiently solved by
the non-negative constraint SMV-ADMM algorithm. Once
the sparse code φ̂ = [x̂T , êT ]T is obtained, the abundance can
be estimated from the vector x̂. Hence, we can effectively get
rid of the small annoying bilinear components in GBM and
accurately predict the abundances for the linear combinations.

4.3. Joint Sparsity Model for Abundance Estimation

Here, we introduce some more notations first. Let us de-
fine Y = [y1,y2, . . . ,yN ] ∈ RL×N be a observation ma-
trix which contains N adjacent bilinear mixed pixels, and let
X = [x1,x2, . . . ,xN ] ∈ RR×N and E = [e1, e2, . . . , eN ] ∈
RR∗×N be the linear and bilinear abundance matrices associ-
ated with the dictionaries A and B, respectively.

As the neighbouring pixels usually have similar end-
members, we seek a joint sparse representation on the abun-
dance matrix Φ = [XT ,ET ]T ∈ R(R+R∗)×N , so that all its
columns have the same support set and satisfy Y = MΦ.
Similar to the case of SMV, the joint sparsity problem can be
formulated as

min
Φ

1

2
||MΦ−Y||2F + λ2||Φ||1,2, s.t. Φ ≥ 0 (10)

where λ2 > 0 is an appropriate balancing parameter, ||Φ||1,2 =∑R+R∗

j=1 ||φi||2 and φi ∈ RN is the i-th row of the matrix Φ.
Once the composite sparse representation Φ̂ = [X̂T , ÊT ]T is
obtained, the abundances can be obtained from X̂.

To solve (10), we propose a non-negative constraint
MMV-ADMM algorithm. We first introduce an auxiliary
matrix variable Z ∈ R(R+R∗)×N and transform the problem
as

min
Φ,Z

1

2
||MΦ−Y||2F + λ2||Z||1,2,

s.t. Z ≥ 0, Φ− Z = 0.
(11)

Thus, the augmented Lagrangian function of Eq. (11) is

Lµ(Φ,Z,T) =
1

2
||MΦ−Y||2F + λ2||Z||1,2

+ < T,Φ− Z > +
µ

2
||Φ− Z||2F (12)

where µ > 0 is the penalty parameter, T ∈ R(R+R∗)×N is the
Lagrangian multiplier and we let Λ = T/µ. We minimize the
augmented Lagrangian function iteratively by fixing one vari-
able and update the other, the entire algorithm is summarized
in Algorithm 1 below.

Algorithm 1 Non-negative constraint MMV-ADMM Algo-
rithm for Jointly Sparse Abundance Estimation
Input: the scalar λ2, the matrix Y and the dictionary Φ;
Output: The estimated abundance X̂;

1: Initialize: Φ0,Z0,Λ0, µ, k = 0;
2: while not converged do
3: Fix Z and update Φ by:

Φk+1 = (MTM + µI)−1(MTY + µ(Zk −Λk))

4: Fix Φ and update Z by:

Zk+1 = max
[
Sλ2/µ(Φ

k+1 + Λk), 0
]

5: Update the Lagrangian Multiplier Λ:

Λk+1 = Λk + Φk+1 − Zk+1

6: Update k: k = k + 1.
7: end while
8: return [X̂T , ÊT ]T = Zk.

In Algorithm 1, Step 3 is essentially a ridge regression
problem. Though the problem in Step 4 is non-smooth, it has
a closed-form solution by a soft row-shrinkage thresholding
operator Sκ(·) described in [14].

5. EXPERIMENT

In the first experiment, the proposed SMV-ADMM algorithm
is evaluated on two synthetic images of size 50 × 50 gener-
ated by LMM and GBM, respectively. The endmember dic-
tionary A ∈ R224×12 is constructed by randomly choosing 12
endmembers from a selected USGS library2. For each pixel
generated by both models, we randomly choose three end-
members from A and mix them by Dirichlet distribution with
both ANC and ASC. The parameter γij in (3) for GBM is
generated by uniform distribution on the interval [0.5, 1]. All
the pixels are corrupted by a white noise with SNR=40dB.
We compare our algorithm with four other algorithms, that is,
FCLS [6], CSUnSAL+ [10], KFCLS [15] and GDA [8]. The
first two algorithms are developed for the LMM, the latter are
for non-linear models. The estimation results are shown in Ta-
ble 1, where the signal-to-reconstruction error (SRE) and the
reconstruction error (RE) are introduced in [10, 8], respec-
tively. From the results, we can see that (i) FCLS shows the
best performance on the LMM, but it does not perform well

2http://www.lx.it.pt/ bioucas/code/sunsal demo.zip
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Table 1. Comparison of five abundance estimation algorithms on LMM and FM

Criteria Model Estimation Algorithm
FCLS [6] KFCLS [15] CSUnSAL+[10] GDA [8] Proposed

SRE (dB) LMM 41.4160 8.7507 38.9119 41.3122 37.8415
GBM 11.6985 4.0998 13.1667 10.6583 22.4512

RE (×10−2) LMM 0.0684 N.A. 0.0733 0.0674 0.1031
GBM 3.5478 N.A. 0.9300 3.7415 0.5513

Table 2. Comparison of Reconstruction Error for Fig. 1
Algorithm RE (×10−3)

FCLS 7.2142
CSUnSAL+ 6.8127

GDA 6.6532
SMV-ADMM 6.2779
MMV-ADMM 6.0615

on the GBM; (ii) though KFCLS is designed for non-linear
mixture, it shows even worse performance on GBM; (iii) al-
though CSUnSAL+ is for the LMM, it shows some robustness
on the GBM where small non-linearities occur; (iv) the pro-
posed algorithm shows competitive results on the LMM and it
performs much better on the GBM than the other algorithms.

In the second experiment, we evaluate the performance
of the proposed SMV-ADMM and MMV-ADMM algo-
rithms on the well-known AVIRIS Cuprite image over the
Cuprite mining region in Nevada, USA, which is available
online in reflectance units3. The portion we use in this ex-
periment is the 512 × 614 image of the sector labelled as
”f970619t01p02 r02 sc02.a.rfl”. Before analysis, we get rid
of the water absorption bands leaving 188 bands in total [10].
First, 12 pure endmembers are automatically extracted from
the image by VCA. Though the VCA is designed under the
assumption of the LMM, as explained in [8], we can still
apply it to the GBM where only small non-linearities occur.
We compare our proposed SMV-ADMM and MMV-ADMM
algorithms with the FCLS, CSUnSAL+ and GDA algorithms
on a sub-image of size 200× 200. The estimated abundances
are displayed in Fig. 1, and the results of reconstruction er-
rors are shown in Table 2. From the results, we can conclude
that (i) the proposed SMV-ADMM algorithm shows much
lower RE compared with the FCLS, CSUnSAL+ and GDA
algorithms; (ii) with the spatial information employed, the
proposed MMV-ADMM algorihtm shows further improved
results.

6. CONCLUSION

In this paper, we have proposed a simple but very effective
method for bilinear abundance estimation by transforming the
problem into a linear sparse recovery task. The reformulated

3http://aviris.jpl.nasa.gov/html/aviris.freedata.html

Fig. 1. Comparison of Abundance Estimation on Real Data
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problem can still be efficiently solved by non-negative con-
straint l1-minimization techniques such as the SMV-ADMM
algorithm. Furthermore, as the adjacent pixels usually con-
tain similar endmembers, we employ the joint sparsity model
to take advantage of the spatial information by the proposed
MMV-ADMM algorithm. The simulation results demonstrate
our proposed method with significant improvements both on
synthetic and real data sets.
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