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ABSTRACT

An image face modeling framework is proposed that aims
to enhance the face modeling capability of the well known
Active Appearance Model (AAM). AAM has been used suc-
cessfully in person-specific related applications but it poses
significant limitations when employed in generic face mod-
eling. Thus this work is focused on the development of new
face models which are generic in nature and which accurately
fit unseen image faces, both in terms of shape and texture. For
this purpose, images are decomposed into face related compo-
nents which are subsequently clustered on the basis of shape
similarities. Experimental results show that models generated
through this novel framework can be significantly more ef-
fective than conventional AAM, in terms of both shape and
texture.

Index Terms— Active Appearance Models, Image Face
Analysis and Synthesis.

1. INTRODUCTION

The Active Appearance Model (AAM) introduced by Cootes
et al. [1] is an algorithm for constructing a synthetic image
that is a close match to an input face image, in terms of both
shape and appearance. Furthermore AAM can be considered
as an optimization problem that minimizes the difference be-
tween the synthesized image and the real texture of the input
image. AAM’s ability of differentiating and modeling shape
and texture helps in the synthesis of more photorealistic im-
ages. AAM applications can be found in a variety of areas
such as object tracking [2], medical image analysis [3], age
estimation and synthesis [4, 5], facial recognition and model-
ing systems [6], and gait analysis [7]. A comprehensive sur-
vey of AAM based modeling techniques can be found in [8].

Note that there are two types of application scenarios
for modeling face images [9]. One relates to applications
such as Gaze Estimation, Head Pose Estimation or Expres-
sion Recognition and involves person-specific models. The
second type deals with the construction of unseen faces and
involves generic face models. The processes used in the con-
struction of Active Appearance Models for these two types

are completely different. Authors in [9] have shown that
person-specific AAMs are easier to build, whereas generic
AAMs appear to be problematic in texture modeling. Mod-
eling a face in age estimation and synthesis comes under the
later of the two scenarios discussed above and is the main
driver in this work.

Thus the proposed face modeling framework, named
Multi-Component/Multi-Model AAM (MC/MM-AAM), aims
at the creation of generic AMM based face models, which are
robust to unconstrained input conditions and can preserve
discriminative information when generating “unseen” face
images.

The modeling phase of MC/MM-AAM involves three ma-
jor steps. In the first step face images, taken from the train-
ing dataset, are decomposed into face related components e.g.
eyes, mouth, nose, etc. to form facial component specific
datasets. This decomposition aims to exploit the local char-
acteristics of each component and can result in better model
fitting as suggested as [10, 11]. In the second step, clustering
is applied on each individual facial component dataset. This
is achieved on the basis of face similarities and as a result,
each original facial component set can be represented by sev-
eral subsets (or clusters). Note that the idea of grouping face
images into a number of clusters is also presented in [12, 13],
but clustering is done on the basis of shape orientation (pose)
only, whereas clustering here caters for both face orientation
and expression. Finally, in the last step a conventional AAM
is applied to each cluster of a facial component that results in
more than one model for each component.

The synthesis phase of MC/MM-AAM, allows for more
than one shape for each component of the input face image to
be synthesized. The best component shape offering minimum
average mean square error, which is formed between original
and synthesized textures, is then chosen for each component.
Finally, the selected shapes of all components are combined to
form a whole face shape, which when presented into a whole
face conventional AAM [1] delivers the synthesized texture
of the input face image.

Experimental results show that the proposed framework
produces more accurate models of unseen face images, in
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terms of both shape and texture, as compared to the conven-
tional AAM model .

The rest of this paper is organized as follows. Section 2
explains the design and structure of the Modeling and Syn-
thesis parts of MC/MM-AAM. A discussion on experimental
results is given in Section 3, whereas concluding remarks are
provided in Section 4.

2. MULTI-COMPONENT / MULTI-MODEL AAM
(MC/MM-AAM)

The proposed MC/MM-AAM framework comprises of two
parts i.e. a Modeling and a Synthesis phase.

2.1. Modeling Phase

Modeling involves three major steps, as it is explained below
and shown in figure 1.
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STEP-3: AAM Modeling

Fig. 1. System Diagram of proposed MC/MM-AAM. Here
F1,F2, . . . ,FN are (N = 4) components-based datasets
and Cnk’s are corresponding component clusters. These are
used to produce component based model matrices Rnk’s. The
number of clusters employed for each component can be the
same i.e. p = q = r = 8 or it can differ.

STEP-1: Involves the component-based decomposition
of images into facial components. Face images taken from
a training dataset are decomposed on the basis of N facial
components (N = 4 in our case i.e. cheeks + eyebrows,
eyes, mouth and nose). This yields N component datasets
Fn = {Sn|Gn} for n = 1, 2, . . . , N , each corresponding
to a specific face component and containing shape Sn infor-
mation, in form of landmark points and texture Gn in form

of intensity values. This component-based decomposition is
being used to account for the local shape and texture variabil-
ity that characterizes different facial components. Shape in a
face image i = 1, 2, · · · , L is represented by a vector f con-
taining the M landmark points outlining the different facial
components

f i = [x1, x2, . . . , xM , y1, y2, . . . , yM ]T , (1)

here {(xm, ym)} are the coordinates of the mth point. In this
step, the shape vector f i of the ith face image is decomposed
into N sub vectors of different lengths, such that

f i
1 = [x11, x12, . . . , x1a, y11, y12, . . . , y1a]

T ,

f i
2 = [x21, x22, . . . , x2b, y21, y22, . . . , y2b]

T ,

... (2)

f i
N = [xN1, xN2, . . . , xNc, yN1, yN2, . . . , yNc]

T ,

where f i
n is the shape vector of nth facial components of the

ith image. Figure 2 shows sample shapes of all four com-
ponents. After decomposition of all training face images,
shape and texture vectors belonging to the same component,
are grouped into separate sets to form N component-based
datasets as given by:

Sn = [f1
n, f

2
n, f

3
n, · · · , fL

n ],

Gn = [g1n, g
2
n, g

3
n, · · · , gLn ], (3)

Fn = {Sn|Gn},

where Fn is the nth component-based dataset containing
shape vectors Sn and texture vectors Gn from all L training
images.

(a) (b)

(c) (d)

Fig. 2. Example shapes of four components i.e. cheeks +
eyebrows, nose, mouth and eyes.

STEP-2: Each component-based dataset Fn is divided
into a number of clusters by using LBG-Vector Quantization
(VQ) [14].

This is an iterative algorithm that starts with taking the av-
erage of whole training set to be the initial code vector. This
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is subsequently split into two code vectors which are subse-
quently optimized and divide the initial set into two clusters.
These two clusters are split into four and the LBG-VQ pro-
cess continues until the desired number of clusters is obtained.
Thus each component-based dataset Fn is split into a number
of clusters, using shape information. In general, the number
of clusters for each component i.e. p, q, etc. can be different
as shown in figure 1. Note that in this work eight clusters are
employed per facial component, i.e. p = q = · · · = r = 8, so

Cnk = V Q{Sn}, (4)

where Cnk for k = 1, 2, 3, · · · , p is the kth cluster cor-
responding to the nth facial component and is obtained
by employing VQ on shape vectors Sn. Note that ev-
ery cluster contains both shape and texture information so
Cnk = {Snk|Gnk} and the union of p Cnk clusters gives
Fn. Figure 3 shows sample shapes of cheeks + eyebrows
taken from two different clusters. Obviously samples from
same cluster will have similar shapes.

(a) (b)

(c) (d)

Fig. 3. Example shapes of cheeks + eyebrows component
taken from two different clusters: (a) and (b) belong to one
cluster, whereas (c) and (d) are from another cluster. In-
tra cluster similarities and inter cluster variations can be ob-
served.

STEP-3: Here a corresponding component model and a
model matrix Rnk is constructed for each cluster using con-
ventional AAM optimization [1], see figure 1. Thus a training
process produces (p+q+ · · ·+r) model matrices Rnk which
are stored and can be subsequently used in the synthesis of an
unseen input face image.

Note that the purpose of employing the second and third
steps is to increase modeling accuracy by exploiting similari-
ties in the shape characteristics of different facial components.
This in turn can be viewed as an attempt to bridge the existing
gap between the observed relatively low modeling accuracy
of generic AAMs and the much higher accuracy required in
person specific AAMs.

2.2. Synthesis Phase

Following the previously generated component models, the
best model for each component is selected and these are sub-
sequently fused to form a single set of parameters that repre-
sents the whole face. The proposed model fitting process can
be explained as follows:

1. Input face image t is decomposed into components
to form f t

1, f
t
2, · · · , f t

N shape vectors and their corre-
sponding texture vectors gt1, g

t
2, · · · , gtN .

2. Apply p conventional iterative AAM fitting algorithms
based on model matrices Rnk (k = 1, 2, · · · , p) for
each n = 1, 2, · · · , N component. Obtain same num-
ber of model parametersv́ectors ctn1, c

t
n2, · · · , ctnp for

each component.

3. For each component, select the best model parameters’
vector on the basis of a minimum average Mean Square
Error (MSE). MSEs are formed between the original
texture and the textures associated with the p models of
each component and calculated across all iterations of
the fitting algorithm [1].

4. Synthesize only the shape vectors f̂ t
1, f̂

t
2, · · · , f̂ t

N of all
N components with the best model parameters selected
above. Combine all component-based shape vectors to
form one single vector that represents the whole face
shape i.e.

f̂ t = [f̂ t
1, f̂

t
2, f̂

t
3, · · · , f̂ t

N ]. (5)

5. Finally in the last step, the whole face texture is syn-
thesized for the shape vector obtained in previous step.
For this purpose, the corresponding texture of the best
shape vector is projected in the Eigen space obtained
from a whole face conventional AAM. The resulting
model parameters are then used to synthesize the whole
face texture.

3. EXPERIMENTAL RESULTS

Performance assessment and thus comparisons between
MC/MM-AAM and conventional AAM has been performed
using the publically available facial dataset IIM [15]. IIM
consists of 240 annotated images (6 images per person).
Each image is 640 × 480 pixels and comes with 58 hand
labeled shape points which outline the face contours. From
these images system training has been performed using 180
images (30 persons with 6 images per person). The remain-
ing 60 images of 10 persons have been used for synthesis
purposes.

Thus MC/MM-AAM and conventional AAM have been
compared with respect to both shape and texture. In case of
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Fig. 4. Each bar in the graph represents Average Shape Er-
ror over six test images per person. In 7 out of 10 persons
MC/MM-AAM outperforms AAM.
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Fig. 5. (a) modeled shape (Red-circles) of MC/MM-AAM
are superimposed on Ground Truth Shape, (b) modeled shape
of Conventional AAM (Red-plus signs) are superimposed on
Ground Truth Shape.

shape, model fitting is evaluated using the point-to-point er-
rors between modeled shape and ground truth point coordi-
nates as suggested in [8] and given below:

E(f̂ t, fgt) =
1

M

M∑
m=1

√
((x̂t

m − xgt
m)2 + (ŷtm − ygtm)2) (6)

where E(f t, fgt) is the point-to-point error between modeled
shape f̂ t and ground truth shape fgt. E(f̂ t, fgt) is then aver-
aged over the 6 test images available per person, see figure 4.
Note that MC/MM-AAM outperforms the conventional AAM
system in 7 out of 10 cases. A further illustration of the po-
tential performance of MC/MM-AAM is shown in figure 5.
Figure 6 shows errors between modeled and original textures
for both systems. Again MC/MM-AAM outperforms AAM
in 7 out of 10 persons.

Finally, figure 7 illustrates visually and possibly more ef-
fectively, the MC/MM-AAM advantage over AAM, by offer-
ing a comparison between “Target”, MC/MM-AAM modeled
textures and AAM modeled textures.
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Fig. 6. Each bar in this graph represents Average Texture
Error over six test images per person.

(a) (b) (c)

Fig. 7. (a) “Target” i.e. original image textures corresponding
to ground truth shapes, (b) modeled textures corresponding
to MC/MM-AAM modeled shapes, and (c) modeled textures
corresponding to AAM modeled shapes.

4. CONCLUSION

In this paper, a novel face modeling framework is proposed
which can successfully synthesize unseen face images. This
has been effectively achieved by introducing two process-
ing steps prior to the use of conventional AAM. One is
component-based decomposition through which local face
characteristics can be better accounted for and preserved. The
second step involves shape based clustering of facial compo-
nents into groups. The resulting Multi-Component/Multi-
Model system offers in most cases significant modeling gains
both in terms of shape and texture.
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