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ABSTRACT

Image co-saliency detection is a valuable technique to high-
light perceptually salient regions in image pairs. In this paper,
we propose a self-contained co-saliency detection algorithm
based on superpixel affinity matrix. We first compute both in-
tra and inter similarities of superpixels of image pairs. Bipar-
tite graph matching is applied to determine most reliable inter
similarities. To update the similarity score between every two
superpixels, we next employ a GPU-based all-pair SimRank
algorithm to do propagation on the affinity matrix. Based on
the inter superpixel affinities we derive a co-saliency measure
that evaluates the foreground cohesiveness and locality com-
pactness of superpixels within one image. The effectiveness
of our method is demonstrated in experimental evaluation.

Index Terms— Image co-saliency detection, superpixel
affinity propagation, bipartite graph matching, all-pair Sim-
Rank, co-saliency measure

1. INTRODUCTION

Visual saliency modeling simulates the perceptual stimuli of
human vision system in detecting highly salient regions from
their surroundings. It has been extensively studied in recent
years, and successfully used in many applications [1][2][3].
Yet, most existing works focus on saliency map estimation
for a single image. Image co-saliency modeling that detects
co-salient regions in an image pair is less investigated [4]. Our
focus in this paper is proposing a new co-saliency model by
globally propagating the intra/inter superpixel affinities and
measuring co-saliency maps based on the affinity matrix.

Relation to prior works. Saliency-based visual atten-
tion model was early proposed in [5] which evaluates several
features such as color, intensity, and orientation, and then in-
tegrates them to form a scalar map. This work was further ex-
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tended by adding other local features [6]. Besides these cog-
nitive models, many computational methods have been devel-
oped over the past years, including frequency space methods
[7] [8], probabilistic models [9] and learning-based models
[10]. Recently, Perazzi et al. [11] developed a new contrast-
based model called saliency filter. It decomposes an image
into superpixels and computes the saliency map based on two
measures of contrast that rate the uniqueness and the spatial
distribution of the superpixels.

Image co-saliency detection, on the other hand, is to de-
tect similar salient objects from image pairs. In the work of
[4], a co-multilayer graph is constructed with region similar-
ity computed both within and among images. Each region
is described by color and texture features. Then single-pair
SimRank [12] is adopted to computes the similarity between
two regions. In the end, the co-saliency score is computed as
a linear combination of the maximal inter similarity value and
other three single-image saliency scores [5][13][7].

Our contributions. In this paper, we present a novel co-
saliency detection algorithm by fully exploiting the superpixel
affinity matrix for an image pair. The first contribution of our
method is a self-contained framework, without dependence
on single-image saliency maps. Our method actually converts
the co-saliency detection problem to saliency detection, thus
being able to adapt well-known saliency detection techniques.
The second contribution is the new co-saliency model, which
evaluates the co-salient map of one image according to its
matching in the other image. By this way, we are able to es-
timate cosaliency maps according to the inter affinity matrix
directly. The third contribution is the application of bipar-
tite graph matching on superpixels across image pairs. This
produces a good initialization for the followed affinity prop-
agation. Experiments demonstrate that our method achieves
a better performance than existing co-saliency and saliency
approaches, especially for scenes with complex background.

2. ALGORITHM

The framework of our method is illustrated in Fig. 1. In the
following we describe the details of each key component.
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Fig. 1. Our framework. (a) Compute intra and inter superpixel affinity matrices; (2) Conduct bipartite superpixel matching
on inter affinity matrix, which produces sparse and reliable affinities; (3) Update the affinity matrix via superpixel affinity
propagation; and (4) Generate co-saliency maps from the updated inter affinity matrix.

2.1. Superpixel Affinities

We start by decomposing images into perceptually homoge-
nous regions (superpixels) using SLIC algorithm [14]. A su-
perpixel is described by two types of features, i.e. color distri-
bution and center position. Here, we adopt the color feature
from [4], which represents a superpixel as a 100-dimension
color histogram by k-meaning clustering color vectors of pix-
els in the concatenation of RGB, Lab and YCbCr color s-
paces. We then define the affinity between two superpixels,
vi and vj , to be a combination of their color feature similarity
C(i, j) and position similarity P (i, j), given by

Sf (i, j) = αC(i, j) · βP (i, j),
C(i, j) = exp(−χ2(ci, cj)),
P (i, j) = exp(−||pi − pj ||2),

(1)

where ci and cj denote color features for vi and vj , respec-
tively; χ2(·) denotes the Chi-square distance, i.e. χ2 =∑100

z=1
(ci(z)−cj(z))

2

ci(z)+cj(z)
. P (i, j) is exponential function to Eu-

clidean distance between center positions of vi and vj . The
parameters α and β control the sensitivity of color and posi-
tion similarities, empirically set as α = 1 and β = 0.0005.

Suppose images I1 and I2 are decomposed into M and N
superpixels. The overall affinity matrix is composed of the in-
tra affinity matrices for each image in the diagonal direction,
and inter affinity matrices across images in the anti-diagonal
direction, formulating an (M + N) × (M + N) matrix (see
Fig. 1(a)). For the intra affinity matrices, we compute affini-
ties only for those superpixels being spatially adjacent. For
the inter affinity matrices, we consider every superpixel pair,
with one superpixel from image I1 and the other from image
I2. Also note the inter affinity matrix from I2 to I1 is trans-
pose to that from I1 to I2.

2.2. Bipartite Superpixel Matching

Since our co-saliency measure is derived from the inter affin-
ity matrix, a good initialization is critical to subsequent algo-
rithm. For this purpose, we propose to apply bipartite graph
matching on the inter affinities. We first construct a bipartite

graph over superpixels from two images, as shown in Fig. 2.
Formally, let G = {X,Y,B} be a bipartite graph with node
set X ∪ Y , where X = X̂ ∪ DX and Y = Ŷ ∪ DY . X̂
and Ŷ are real superpixels in images I1 and I2, respective-
ly (see the colored squares in Fig. 2), while DX and DY are
dummy nodes (the black squares) to make X and Y have an
equal size. For generality, we set the number of dummy n-
odes |DX | = N and |DY | = M . The across-affinity matrix
B = {bij} between X and Y is constructed as follows:

bij =

 Sf (i, j), if vi ∈ X̂ and vj ∈ Ŷ ;
0, if vi ∈ DX and vj ∈ DY ;
η · medianklSf (k, l), otherwise,

(2)

where η is a weight controlling the effect of dummy nodes.
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Fig. 2. Bipartite superpixel matching. By the construction of
bipartite graph, the optimal matching on images serves as a
good initialization for affinity propagation.

Given the bipartite graph, we solve the optimal graph
matching in polynomial time using Hungarian algorithm.
The bipartite graph matching gives us an optimal one-to-one
superpixel matching at the group level, better than searching
optimal match for each superpixel independently. After graph
matching, we select valid and reliable matches as those con-
necting with two real nodes and having affinities larger than a
threshold, i.e. {Sf (i, j)|vi ∈ X̂, vj ∈ Ŷ , Sf (i, j) > τ}. One
matching example is shown in Fig. 2.

Our bipartite superpixel matching allows us to rely on the
most reliable affinities for the following affinity propagation,
which is helpful to guarantee the computing accuracy. Addi-
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tionally, the generated inter affinity matrix is sparse in nature,
leading to high computing efficiency in propagation.

2.3. Superpixel Affinity Propagation

Based on the initialized affinity matrix, we construct a rela-
tional graph Gr = {V,E}. Its node set V is the group of all
the superpixels, i.e., V = X̂ ∪ Ŷ . The edge set E contains t-
wo parts, the spatially neighboring connections in each image
and the matching connection due to the bipartite superpixel
matching. The edge weights are from Eq. 1.

We now update the superpixel affinities through propagat-
ing reliable affinities on graph Gr. Basically, we encourage
two nodes to be similar if their neighbors have high similari-
ties. This can be defined as follows,

S(t+1)
p (a, b) =

γ

|N (a)||N (b)|
∑

i∈N (a)

∑
j∈N (b)

S(t)
p (i, j), (3)

where γ ∈ [0, 1] is a decay factor; |N (a)| and |N (b)| denote
the numbers of neighbors N (a) and N (b) for nodes a and b.

The propagation can be achieved by utilizing SimRank
algorithm [12] on the graph. As we need to udpate the sim-
ilarity Sp(a, b) for every two superpixels, we adopt all-pair
SimRank algorithm. It is noticed that Eq. 3 is highly paral-
lelizable, since for two node pairs, (a, b) and (c, d), the com-
putation of similarities Sp(a, b) and Sp(c, d) is independent in
one iteration. In practice, we do implementation using CUDA
architecture, ensuring a very fast timing performance.

2.4. Superpixel Co-saliency Generation

After affinity propagation, we extract co-saliency maps from
the inter affinity matrix. The intuition of our approach is e-
valuating the co-saliency map of one image according to its
matching in the other image. By this way, we actually convert
co-saliency detection problem to saliency detection. One no-
table advantage is that we can adapt successful single-image
saliency techniques for co-saliency detection. In our work, we
borrow the idea of saliency filter [11] and derive a co-saliency
score by evaluating two measures, i.e. foreground cohesive-
ness and locality compactness.

To be specific, we may use row vectors of the inter affini-
ty matrix as feature vectors for the corresponding superpixels.
Let us take the inter affinity matrix Affinity(I1, I2) from I2 to
I1 for example. Given superpixels vi and vk of image I1, their
row vectors si and sk have three possible cases: a) Both have
low similarities, indicating vi and vk belong to background;
b) They have close matching in I2, indicating vi and vk be-
long to foreground; c) They have different matching in I2. In
this case, the distance between si and sk can be very smal-
l, may leading to wrong results. To solve this problem, we
construct a co-foreground model and based on it measure the
saliency of superpixels.

It is noticed that the inter affinity matrix indeed reveals
how similar regions distribute in two images. Herein a co-
salient foreground model can be defined as the normalized
summation of row vectors of the inter affinity matrix, i.e.

F(j) =
1

Z

M∑
i=1

Sp(i, j), j = 1, . . . , N. (4)

where Z is the normalization factor, ensuring
∑

j F (j) = 1.
F actually reflects the probability distribution of co-salient
foreground in image I1 with respect to image I2. We can
now evaluate the likelihood that superpixels in image I1 are
produced from the foreground model. This is given by

g(i) = FT si, (5)

where si is the i-th row vector in Affinity(I1, I2) .
Based on the likelihood, we further define two saliency

measures. First, the foreground cohesiveness is defined as the
likelihood of i-th superpixel being in salient region according
to appearance cue,

Ai =
M∑
k=1

exp(g(i)g(k)) · wp
ik, (6)

where exp(g(i)g(k)) means if vi and vk have similar high
matching in I2, they probably belong to salient regions si-
multaneously. wp

ik = 1
Zi
exp(− 1

2σ2
p
||pi − pk||2) controls the

influence radius in the spatial domain. Zi is the normaliza-
tion factor. Second, we measure the locality compactness of
foreground objects by means of weighted spatial variance,

Li =
M∑
k=1

||pk − µi||2 · wc
ik (7)

where pk is the center position of vk; µi =
∑M

k=1 w
c
ikpk is

the weighted mean position of vi, and wc
ik = 1

Zi
exp(g(i)g(k)).

In the end, we combine the above two measures yielding
a co-saliency value Sc(i) for each superpixel:

Sc(i) = Ai + Li. (8)

The saliency values are normalized finally to the range [0..1].
Fig. 3 shows one example.

(a) (b) (c) (d)

Fig. 3. Co-saliency computation. (a) Image pair; (b) Co-
foreground cohesiveness; (c) Locality compactness; (d) The
resulting co-saliency map.
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Fig. 4. Comparative performance of co-saliency detection of the proposed approach and state-of-the-art methods. From top to
bottom are input image pairs, our results, results from CM [4], SF [11], HC [15] and RC [15].

3. EXPERIMENTAL RESULTS

In this section, we verify the performance of our co-saliency
algorithm on several image pairs, which were used in [4].
Fig. 4 shows the comparison results of our method, exist-
ing co-saliency method (eg, CM [4]) and several state-of-art
saliency methods, including saliency filter (SF) [11], (HC)
[15] and (RC) [15]. As we can see, our method can gen-
erate object boundaries more complete and clean than those
from CM. For single-image saliency detection, SF is reported
to outperform most state-of-art methods [11]. In our exper-
iment, we found that it works well for images with salient
objects and relatively simple background, yet may produce
obvious artifacts in case of complex background. As shown,
SF, HC and RC have sever background artifacts for image
pairs “amira” (the second column) and “rimg024a” (the last
second column).

We next perform an objective comparison by computing
the salience degree between the estimated saliency map and
binary ground truth masks. Here, we adopt F-measure evalua-
tion metric. It is computed by the weighted mean of precision
and recall, given by Fσ = (1+σ2)Pre·Rec

σ2Pre+Rec , where σ2 = 0.3
[4]. In order to compute those evaluation metrics, the (co-
)saliency map is converted to a binary map using an adaptive
threshold. The threshold is determined as two times the mean
saliency of a saliency map. Table 1 shows the detailed metric
values for all the examples used in this paper. We can see that
our method produce results very close to the ground truth in
terms of F-measure. As for precision and recall metrics, CM
and RC have high precision values yet low recall values in
many examples. This means the ratio of false negative is high

in some cases. Our method, on the other hand, have much
close precision and recall values. As for SF and HC method,
their performance is subject to the background complexity,
for which SF may have relatively low precision and/or recall
values.

Table 1. Performance Evaluation
Image Our % CM% SF% HC% RC%
Pair P - R - F P - R - F P - R - F P - R - F P - R - F

amira 93 84 91 97 54 82 84 26 56 84 56 76 99 33 68
cdhippoa 92 85 90 90 72 85 76 45 65 77 37 62 98 25 58
rimg050a 95 91 94 87 88 87 87 85 87 85 88 86 90 91 90

areo 89 65 83 55 78 59 61 44 56 33 58 37 64 66 65
rimg024a 96 84 93 94 76 89 82 91 84 76 89 78 82 67 78

4. CONCLUSION

In this paper, we propose a novel algorithm for co-saliency
detection from image pairs. After decomposing images into
superpixels, our method fully exploits the properties of the
intra-/inter- affinity matrix, and develop a co-saliency score
based on the inter affinity matrix. Our method actually con-
vert co-saliency detection problem to saliency detection, and
can rely on well-established saliency detection techniques. In
addition, we propose to apply bipartite graph matching among
image pairs to improve the accuracy of superpixel affinity
propagation. In the next, we plan to evaluate the performance
of our method on a large-volume dataset.
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