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ABSTRACT
In the context of multi-temporal synthetic aperture radar (SAR)
images for earth monitoring applications, one critical issue is
the detection of changes occurring after a natural or anthropic
disaster. In this paper, we propose a new similarity measure
for automatic change detection using a pair of SAR images
acquired at different dates. This measure is based on the
evolution of the local statistics of the image between two
dates. The local statistics are modeled as a Gaussian Mixture
Model (GMM), which approximates the probability density
function in the neighborhood of each pixel in the image. The
degree of evolution of the local statistics is measured using the
Kullback-Leibler (KL) divergence. One analytical expression
for approximating the KL divergence between GMMs is given
and is compared with the Monte Carlo sampling method. The
proposed change detector is compared to the classical mean
ratio detector and also to other recent model-based approaches.
Tests on the real data show that our detector outperforms
previously suggested methods in terms of the rate of missed
detections and the total error rates.

Index Terms—change detection, Gaussian mixture models,
Kullback-Leibler (KL) divergence, multitemporal synthetic aper-
ture radar (SAR) images.

I. INTRODUCTION
Detecting temporal changes occurring on the earth surface by

observing them at different times is one of the most important
applications of remote sensing technology. In the case of
synthetic aperture radar (SAR) imagery, change detection has
many applications, such as environmental monitoring, agricul-
tural surveys, urban studies, and forest monitoring [1]. One
critical issue in multitemporal SAR images is the detection of
changes occurring after a natural or anthropic disaster. Since
the changes produced by these events are abrupt and seldom
predictable, they are often difficult to model, even for the same
kind of change. For example, an earthquake can have different
features depending on when or where it happens. Also, the
changes of interest are all mixed up with normal changes if
the time gap between the two acquisitions is too long [2].

Many change detection methods have been proposed to
solve this problem. According to the data sources, the existing
methods fall into two categories: bi-temporal change detection
and image time series change detection [3], [4]. Furthermore,
most bi-temporal change detection techniques can be classified
into supervised [5] and unsupervised change detection methods

[6]. In our paper, we only consider the unsupervised change
detection process for two images acquired at different time. In
general, most unsupervised change detection methods include
three steps (Figure 1): 1) preprocessing, such as despeckling
and image registration, 2) image comparison to generate a
difference image, and 3) thresholding the difference image
to compute the final binary change detection map [7]–[9]. In
this paper, we choose to focus on the second step, where the
objective is to find a good detector to measure the degree of
the similarly of each pixel between two image data. For the
thresholding method, the method in [7] is adopted to generator
the final edge map.

For image comparison, several detectors have been proposed.
The classical detectors include differencing and ratioing tech-
niques [1], which are carried out by pixel-by-pixel comparison.
Comparing with the difference operator, the ratio operator
is more robust to illumination variation, speckle noise and
calibration errors. However, the ratio operator, also known as
the mean ratio detector introduced by Ulaby [10], assumes
that the texture is a zero-mean multiplicative contribution.
As a result, it cannot detect changes taking place at the
texture level. In recent years, promising methods based on
information measures have been proposed, where the local
probability density functions (pdfs) of the neighborhood of
pixels of the pair images are compared, instead of a pixel-by-
pixel comparison. In [11], the Gaussian model has been used
to approximate the local pdf. However, SAR-intensity statistics
are not typically normally distributed. Therefore, the Pearson
system, which is composed of eight types of distributions,
and one-dimensional Edgeworth series expansion techniques
were proposed to estimate local statistics in [2]. However,
the computation complexity of these two methods is very
expensive since they have to use fourth order statistics to
estimate the parameters of the local pdf. The method proposed
in [12] extends the information measures-based method to the
wavelet domain by using generalized Gaussian and Gamma
distributions to model the subband coefficient magnitudes.

Recently, Gaussian Mixture Models (GMM) have been
widely used in image similarity measure and recognition [13]
since they can approximate a variety of distributions, and only
second-order statistical parameters are needed to be estimated
to obtain the GMM. For SAR images, the GMM has also
been used in [14] to model the difference image for thresh-
olding. In our paper, the GMM is used to approximate the
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Fig. 1. General block diagram of the change-detection.

local statistical distribution of the SAR image. The degree of
similarity between the local statistics of the pair images is
measured using the Kullback Leibler (KL) divergence. Results
from experiments that are conducted with real SAR data are
shown to illustrate the performance of the proposed change
detection method.

This paper is organized as follows. Section II presents
the proposed algorithm, including the description of KL-
divergence, GMMs and the methods to compute KL-divergence
of GMMs. Section III presents the results on real data using
the proposed detector. Finally, conclusions are drawn in Section
IV.

II. ALGORITHM

Let us consider two coregistered SAR intensity images IX

and IY acquired over the same geographical area at two different
times tX and tY, respectively. Our aim is to generate a change
detection map that represents changes that occurred on the
ground between the acquisition dates. This change detection
problem can be modeled as a binary classification problem
where 1 represents change pixels and 0 represents unchanged
pixels.

The proposed change-detection algorithm analyzes the dif-
ference of the local statistics of each pixel’s neighborhood be-
tween the two acquired image data. A pixel will be considered
as a changed pixel if its local statistical distribution changes
from one to the other. In order to quantify this change, the
KL divergence [15] between two probability density functions
is used. In order to estimate the KL distance, the local pdf
of each pixel in the two images needs to be estimated. In this
paper, the local pdfs are approximated by the Gaussian Mixture
Model. More details about the proposed algorithm are given as
follow.

II-A. Kullback-Leibler divergence

The KL-divergence is used as a measure of similarity
between two density distributions. Let fx and gy be two
probability density functions of the random variables x and
y, respectively. The KL-divergence between fx and gy , also

known as the relative entropy, is given by [15]:

KL(fx∥gy) =
∫

fx(x)log
fx(x)

gy(x)
dx.

It can be easily proved that KL(fx∥gy) ̸= KL(gy∥fx), but a
symmetric version called the KL distance [2] may be defined
as:

D(fx, gy) = D(gy, fx) = KL(fx∥gy) +KL(gy∥fx)

In order to compute the KL distance, the pdfs of two variables
have to be known. As described in the following subsections,
in this paper a Gaussian Mixture Model is used to estimate the
local pdfs.

II-B. Image Modeling by GMM

A Gaussian mixture model (GMM) is a weighted sum of
K component Gaussian distributions as given by: p(x) =∑K

i=1 wiN (x;µi,Σi) where x is the measurement or feature
vector, wi, i = 1 . . .K, are called mixing coefficients which
must fulfill

∑K
i=1 wi = 1, and N (x;µi,Σi) is a Gaussian

density with mean vector µi and covariance matrix Σi. As a
result, a GMM is parameterized by {wi, µi,Σi}. The problem
of GMM parameter estimation is to estimate {wi, µi,Σi} given
training vectors. An efficient method for GMM parameter
estimation is to use Expectation Maximization (EM) [16] which
is an iterative refinement algorithm used for finding maximum
likelihood estimates of parameters in probabilistic models.

Here, we propose the use of GMM to model the SAR
image and use the EM algorithm to estimate the parameters
of the GMM. In Figure 2, we compare the performance of
Gaussian approximation and GMM approximation of the pdf
of a window extracted from a considered SAR image. The
top three figures show the fitting results for the SAR image
before abrupt change. In this case, although the Gaussian
approximation gives fairly good fitting performance, the GMM
approximation fits the data much better. The bottom three
figures show the results for the SAR image after abrupt change.
In this case, there are more than one peak in the histogram,
thus Gaussian approximation fails to fit the data. However, the
GMM approximation still provides a good fitting performance
as shown in Figure 2 (f). The Pearson system [2] is another
widely used method in SAR image modeling and it can be used
to represent 8 different types of distributions. Compared to the
Pearson system, the GMM can be used to model any type of
distributions which broaden its application range. As a result,
we use a GMM to model the local probability distribution of
SAR images.

II-C. KL divergence of the GMM

Using GMM, the normalized histogram of SAR images
can be represented as follows: fx(x) =

∑
i αiN (x;µi,Σi);

gy(x) =
∑

j βjN (x;µj ,Σj), where fx(x) is the normalized
histogram before abrupt change and gy(x) is the normalized
histogram after abrupt change. As a result, our objective is
to find the similarity of these two GMM densities. For two
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Fig. 2. Approximation of a histogram coming from a 50× 50 window:(a) Window extracted from the SAR image before abrupt
change. (b) Gaussian fitting of the histogram of (a). (c) GMM fitting of the histogram of (a). (d) Window extracted from the
SAR image after abrupt change. (e) Gaussian fitting of the histogram of (d). (f) GMM fitting of the histogram of (d).

Gaussian densities f̂x and ĝy , the KL-divergence has a closed
form expression [17] given by:

KL(fx∥gy) =
1

2

[
log

|Σĝ|
|Σf̂ |

+ Tr[Σ−1
ĝ Σf̂ ] (1)

+(µf̂ − µĝ)
TΣ−1

ĝ (µf̂ − µĝ)
]

However, there is no closed form expression for the KL-
divergence between two GMMs. Monte Carlo simulation can
estimate the KL-divergence with arbitrary accuracy [17]. Using
Monte Carlo simulation, the KL-divergence of two GMM
distributions f(x) and g(x) can be approximated as

KLMC(fx∥gy) =
1

N

N∑
i=1

log fx(xi)/gy(xi), (2)

where {xi}Ni=1 are i.i.d samples drawn from the GMM fx(x).
This can be achieved by first drawing a discrete sample
ai according to the mixing probability wa, then drawing a
continuous sample xi from the resulting gaussian compo-
nent N (x;µai , σai). As the number of samples N → ∞,
KLMC(fx∥gy) → KL(fx∥gy). As a result, the KL distance
is given by

DMC(fx, gy) = KLMC(fx∥gy) +KLMC(gy∥fx). (3)

The Monte Carlo (MC) method is a convergent method.
However, the number of samples required for high accuracy
approximation is very large which may cause a significant
increase in computational complexity. The matching based

approximation [13] can be used to reduce the computational
complexity. The matching KL-divergence (MKL) approxima-
tion algorithm can be briefly described as follows:

1) Components matching: Define the matching function π
which matches each components of fx(x) to the compo-
nents of gy(x) as:

π(i) = argminj (KL(fi∥gj)− logβj). (4)

where KL(fi∥gj) is the closed form KL-divergence
between the ith Gaussian component of fx and jth
Gaussian component of gy which can be calculated using
(1).

2) GMM KL Approximation: Based on π, approximate the
KL-divergence between two GMMs fx and gy as:

KLmat(fx∥gy) =
∑
i

αi

(
KL(fi∥gπ(i)) + log

αi

βπ(i)

)
. (5)

As a result, the closed form expression of the KL distance for
the matching based method is given by

Dmat(fx, gy) = KLmat(fx∥gy) +KLmat(gy∥fx). (6)

In our experiments, both MC and MKL methods are applied
to approximate the KL-divergence between two SAR images.
In order to compare the approximation performance, we use the
Monte Carlo method with one million samples as the ”ground
truth”. Table I shows the approximation results in terms of
root mean square error (RMSE) which can be calculated as:
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Table I. Comparison of KL approximation methods.
Algorithms MC(100) MC(1K) MC(10K) MKL

RMSE 0.21 0.13 0.06 0.25

RMSE =
√∑L

l=1(K̂L−KLtrue)2, where L is the total
number of pixels in the SAR image.

We can see from Table I that as the number of samples
increase, the approximation performance of MC improves.
However, this will also increase the computational complexity.
The MKL approximation can reduce the computation complex-
ity with minor performance decrease.

III. RESULTS WITH REAL DATA

In order to assess the effectiveness of the proposed approach,
multi-temporal SAR dataset is considered. As shown in Figures
3 (a) and (b), this SAR dataset includes two images, which are
two regions from two SAR images acquired by the European
Remote Sensing 2 (ERS2) satellite SAR sensor over an area
near the city of Bern, Switzerland, in April and May 1999,
respectively [7]. Between the two acquisition dates, the river
Aare flooded parts of the cities of Thun and Bern and the
airport of Bern entirely. Therefore, the Aare valley between
Bern and Thun was selected as a test site for detecting flooded
areas. The available ground truth change between images in
Figures 3 (a) and (b) is shown in Figure 3 (c).

The change-detection maps obtained by different change
detectors are shown in Figure 4. The change detection map
shown in Figure 4 (a) is obtained by using the mean-ratio
detector (MDR) and the thresholding method in [7]; The
change detection maps shown in Figures 4 (b) and (c) are
obtained by using the Gaussian KL detector (GKLD) and the
Pearson-based KL detector (PKLD) in [2], respectively. The
result of our proposed GMMKLD method is shown in Figure
4 (d). From Figure 4, it is clear that PKLD and the proposed
GMMKLD exhibit much better performance than the MRD and
GKLD. In order to compare the Pearson-based KL detector and
the proposed GGM-based detector, the false detections error,
missed detection error and total error are measured by using
the obtained binary change detection mask together with the
ground truth change detection map. Table II summarizes those
three errors for each detector. From Table II, it can be seen
that the proposed detector produces the lowest total error rate
of 0.35%.

Table II. False detections, missed detections, and total errors
(in number of pixels and percentage) resulting from different
change detection algorithms on SAR image dataset.

Detector False detections Missed detections Total errors
Pixels % Pixels % Pixels %

MRD [7] 2683 3% 31 3% 2714 3%
GKLD [2] 7 0.008% 807 70% 814 0.9%
PKLD [2] 42 0.05% 315 27% 357 0.4%
GMMKLD 80 0.09% 243 21% 323 0.35%

(a) (b) (c)

Fig. 3. Multitemporal ERS2 SAR images used in the experi-
ments: (a) image acquired in April 1999 before the flooding;
(b) image acquired in May 1999 after the flooding; (c) the
ground truth change map used as reference in the experiments.

(a) (b)

(c) (d)

Fig. 4. Change detection results from different algorithms on
SAR image dataset: (a) MRD; (b) GKLD; (c) PKLD; (d)
GMMKLD.

IV. CONCLUSION
In this paper, a novel change detector specifically is oriented

to the analysis of multitemporal SAR images is proposed. This
detector is based on an analysis of the local distribution of SAR
images using a Gaussian Mixture Model and the KL distance.
The Gaussian Mixture Model can approximate the local sta-
tistical distribution of SAR image very well, especially when
modeling the local pdf where an abrupt change has occurred.
Compared to existing detectors with higher order statistics,
the proposed method has lower computational complexity with
better change detection performance.
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