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ABSTRACT 
 
Accurate and robust registration of image pairs is of interest 
in many fields that use computer vision such as surveillance 
and medical diagnostics.  In each of these fields the area-
based (or voxel-based) approach to image registration is 
popular, however it is known that these methods are 
sensitive to illumination change where incorrect results are 
common.  Past work in applying chaos theory to computer 
vision has demonstrated that the underlying physics of 
illumination change versus contextual change result in very 
different behavior when analyzed in phase space.  
Illumination is deterministic and results in non-fractal phase 
space behavior, while contextual change is chaos-like and 
results in complex fractal regions in phase space.  A chaos-
theoretic approach to image registration is presented with 
favorable results compared to the traditional and very 
popular Mutual Information measure. 
 
Index Terms-- Image registration, Image sequence analysis, 
Chaos, Nonlinearities. 
 

1. INTRODUCTION 
 
Registration of two images is a common operation in 

applications such as multi-sensor image fusion for 
surveillance for object tracking and change detection and 
fields such as medical diagnostics for region of interest 
detection and isolation.  There are many classes of 
registration algorithms, with a common taxonomy of 
methods being either Point based or Voxel (or Pixel) based, 
defined by Maes, et al. [10] as:  

“Point based methods rely on … landmarks or … 
geometrically salient points.”  

“Voxel based registration methods optimize a 
functional measuring the similarity of all geometrically 
corresponding voxel pairs for some feature.” 

Algorithms that rely on feature point matching will not be 
addressed here since they do not have a direct phase space 
correspondence.  As the voxel methods (also referred to as 
area-based methods in [12][11][16]) require a similarity 
measure, Mutual Information has been shown to be a very 
effective tool for this class of image registration algorithms 
[9].  The performance of the various algorithmic approaches 
depend heavily on the types of variations that are present in 

the image pairs being registered, and Oldridge restates 
Brown’s taxonomy of variations into three classes: “(i) 
variations due to differences in acquisition that cause the 
images to be misaligned, (ii) variations due to differences in 
acquisition that cannot be easily modeled such as lighting, 
and finally (iii) variations due to movement of objects 
within the scene” [12][13].  Zitova and Flusser identify a 
number of weaknesses of area-based methods including, 
“classical area-based methods…exploit…image intensities, 
without any structural analysis. Consequently, they are 
sensitive to…varying illumination” [11].  Likewise the 
findings in the research efforts of a variety of researchers 
including Brown [13], Oldridge [12], Zitova and Flusser 
[11] all confirm it is difficult to separate the effects of image 
transformations from illumination.   

Within this paper, the author will specifically confirm 
these findings and show that Mutual Information often fails 
to identify the correct image changes when illumination 
change is present.  We will then present an alternative 
approach to image registration based on tools commonly 
employed in the field of chaos theory.  It has been shown 
that non-linear dynamical systems often exhibit chaotic 
behavior [4].  Specifically, chaos-like behavior is defined as 
systems which exhibit interesting and complex behavior in 
phase space, and these chaotic phase plots can be 
characterized by their fractal dimension [4].   Phase space is 
simply the mapping of the amplitude of each pixel in an 
image against its relative change compared to the next 
image in the sequence.  In this paper we demonstrate that 
image change due to translations have chaos-like behavior 
when analyzed in phase space, while the effects of 
illumination remain deterministic (non-chaotic); thereby 
making it possible to robustly differentiate illumination 
changes from the changes due to the either object or ego-
motion in image registration.   

 

2. FRACTAL AND NON-FRACTAL IMAGE EFFECTS  
 
There are two elements to the image registration 

problem that a successful algorithm must provide: (i) 
sensitivity to detection of changes/transformations in the 
image, and (ii) insensitivity to the effects of illumination 
changes.  Various researchers have modeled illumination 
changes as being a multiplicative effect [2], and under the 
simple Lambertian model, the scene radiance is: 
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where λ  is the external change to the illumination, mL  is 

the resulting radiance,  is the albedo of the surface, and 

N


is the surface normal.  The changes in radiance due to 
either ego-motion or motion of an object through the field of 
view result in non-linear multiplicative effects through the 
product of the surface normal with the illumination source.  
This has also been verified by Xu and Roy-Chowdury who 
state: “[the changes in the observed image] is a non-linear 
function of the [rotational and translational] motion 
variables” [3].   
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Figure 1: Chaotic nature of moving objects, (a) first image, 
(b) second image with motion and illumination change, and 
(c) resulting phase plot. 

 
Peitgen, et al, states that chaotic behavior of dynamical 

systems can be detected in the phase plot of the system [4].  
Figure 1 provides a laboratory illumination change sequence 
showing the chaotic effects in phase space due to a moving 
object with global illumination present.  The diagonal bright 
line corresponds to the multiplicative shift in image 
amplitudes due to the illumination change.  The broad 
remaining extent of the phase plot is due to the motion of 
the object in the scene.  Figure 2 shows an ego-motion 
problem where the chaotic effects of this type of motion are 
also manifested in complex, i.e. space filling, behavior in 
phase space.  Thus change between image pairs either due to 
moving objects or moving cameras relative to the 
environment exhibit interesting chaos-like behavior in phase 
space. 

The distinctly different phase space behavior of 
illumination change versus motion shown in Figure 1 
provides the chaos-theoretic foundation for solving Zitova 
and Flusser’s issue of area-based methods being unable to 
deal with illumination change [11].  The deterministic 
structure of illumination change will result in a non-fractal 
phase plots; while the chaotic structure from image change 
will result in phase plots with high fractal values.  In the 
next section we will discuss suitable measures for analyzing 

these phase spaces and how they favorably compare to the 
traditional Mutual Information measure. 

 

3. CHAOS-BASED REGISTRATION BETWEEN 
IMAGE PAIRS 

 
Note that mutual information is one of the most 

popular area-based measures for image registration, where, 
the mutual information between two images is defined as[9]: 
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where  )(ap and )(bp are the distributions of images A and 

B,  and ),( bap is the joint distribution of images A and B, 

and a is the intensity of a pixel in image A and b is the 
corresponding intensity of the same pixel in image B.   
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Figure 2: Chaotic nature of ego-motion, (a) entire scene, (b) 
upper left region of first image, (b) upper left region of second 
image, and (d) resulting phase plot. 

 
While there are many interesting properties of mutual 

information, the following three are particularly useful for 
image registration of two images A and B: [9][17]: 

I(A,B) = I(B,A)   (3) 

I(A,A) = H(A)    (4) 

I(A,B)   H(A)    (5) 

Equation (3) establishes symmetry of the Mutual 
Information operator between two images.  The property of 
Equation (4) establishes the upper bounds of the Mutual 
Information operator being the comparison of an image with 
itself.  Equation (5) establishes the fact that by comparing 
any image with a different image the Mutual Information 
will be at most that of the image compared with itself and 
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otherwise will be less than that value.  This is a key 
parameter for using Mutual Information to search for 
optimal registration parameters as it establishes the rule that 
the result will always be less than that for a perfect match.   
        Fortunately, these key three properties also apply in the 
following manner in chaos-based analysis and the properties 
defined in Equations (4) and (5) are even simpler in 
definition.  The chaos-based properties are defined in terms 
of the fractal dimension, FD of the phase plots of the two 
images, A and B, as follows: 

   phase plot phase plot phase plot phase plot, ,D DA B B AF F
     

(6) 

 phase plot phase plot, 1D A AF 
      

(7) 

 phase plot phase plot, 2D A BF 
      

(8)
 

Additionally, the fractal dimension of a single point in 
phase space is zero.  Equation (7) is because the phase plot 
of an image with itself generates a straight line and the 
dimension of a line is one and sets a lower bound for the 
fractal dimension between two images [4].  Thus the lower 
bounds on the registration value between two images are 
actually independent of the image being analyzed when 
applying the chaos-based approach.  Likewise, the greatest 
difference between two images is also independent of the 
two images and only relies on the fact that the most 
complicated phase plot will completely fill the entire phase 
space, resulting in a dimension of two.  Based on Equation 
(7), the process of image registration will be to find the 
transformation that minimizes the fractal dimension of the 
phase plot resulting from the first image and the transformed 
second image. 

As with the Mutual Information measure we need a 
single value to describe the ‘space-filling’ nature of the 
phase plot resulting from comparing two images.  Global 
measures of the fractality of the phase space plots provide 
such a measure.  Two common global measures are the Box 
Counting dimension and the Information Dimension.  These 
fractal measures are morphological-based dimension 
measures and are related to Hausdorff dimension, which is 
defined as [4]: 
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where iU  is the set of hyper-spheres of dimension s 

providing an open cover of space A where the hyper-spheres 
are of    iUdiam .  The Box Counting dimension,  ABdim , 

is an approximation of the Hausdorff dimension defined as 
[4]: 
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where  AN  is the number of boxes of size that cover 

the phase plot A.  The Information Dimension is based on 

Shannon’s definition of the information content in a signal 
and measures the sum of the information across all boxes at 
a given resolution [7]: 
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where  A  is the total density of the phase plot and  iB  

is the density of the phase plot within box Bi.  The 
Information Dimension is then defined to be [7]: 
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The Box Counting method and the Information 
Dimension provide very similar, though rarely identical 
measures for the fractal dimension of a space when the 
space is created by a single underlying phenomenon.   

 
4. RESULTS 

 
Recall Figure 1 , where both motion and illumination 

were present in the image sequence.  Figure 3 (a) provides 
the search space for the detection of this object motion using   
Mutual Information.  Notice that the peak of Mutual 
Information is at the origin meaning there were no 
translations detected.  The Mutual Information search space 
has a smaller second peak which corresponds to the correct 
image translation parameters.  Normalized Mutual 
Information has also been suggested for registration [17] but 
its results against illumination were identical in this case.  
There is no clear method for correcting Mutual Information 
against the presence of illumination, and this has been 
previously verified by other authors [12][13] [16].  

Fortunately, the presence of illumination and motion 
present two distinct physical phenomena and hence result in 
very different behavior when viewed in phase space.   
Figure 3 (b) provides the decision surface for the Box 
Counting method, where the correct translation parameters 
occur at the minima since it is not affected by illumination.  
This is because the portion of phase space corresponding to 
illumination is very compact which results in little excursion 
and hence is virtually ignored by the Box Counting method. 
Unfortunately, the Box Counting method is sensitive to low 
amplitude large excursions which results in the complex 
search surface of Figure 3 (b) that can be difficult to search 
without a complex search algorithm.  The Information 
Dimension, however, provides a fractal measure weighted 
by the frequency of the presence of the phase plot within 
any given region, and hence is expected to be less sensitive 
to these excursions as shown in Figure 4 (a).  Note however, 
that the Information Dimension surface is again double-
peaked.   

When occurring at the same time in an image pair, 
phase plots from these multi-phenomena situations will 
result in spaces that are multi-fractal.  The non-fractal 
regions in a phase plot will lower the overall fractal 
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dimension in the case of weighted measures such as the 
Information Dimension as can be seen in Figure 4 (a).  This 
is because the measure captures the relative frequency of the 
phase plot within a box whereas Box Counting only relies 
on the binary decision of whether or not the phase plot is in 
a particular box.  To minimize the potential impact of these 
non-fractal contributions there are three options to consider: 
(i) use the Box Counting measure, (ii) compute the local 
fractal dimension and segment the non-fractal components 
from the phase plot before computing the global dimension, 
or (iii) remove the non-fractal regions prior to calculating 
the fractal dimension based on the knowledge of their cause 
being illumination change.   

When the phase plot in Figure 1(c) is pre-processed 
using the Mass Dimension which is a local measure [4], and 
the non-fractal regions are removed prior to the calculation 
of the Information Dimension, the search surface becomes 
that in Figure 4 (b).  Notice this surface has the smoothness 
of Mutual Information and the single peak of Box Counting. 

     

 
(a) (b) 

Figure 3: Decision surface for area-based image registration, (a)
using Mutual Information and (b) using Box Counting.

 

 
(a) (b) 

Figure 4: Decision surface for area-based image registration, (a) 
using Information Dimension without illumination removal and 
(b) using Information Dimension with illumination removal.

 
Another case where Mutual Information fails is when 

there is only a small region within an image for performing 
registration.  This can occur when tracking small objects in a 
scene or when there is considerable background in an ego-
motion scene as shown in Figure 5 (a) and (b) with the 
phase plot shown in Figure 5 (c).  In this image only a 
corner of a building is visible from the ego-motion 
application from Figure 2. The search space for using 
Mutual Information is provided in Figure 6 (a).  As with 
illumination corruption, there again is a two peak search 
space.  The primary peak corresponds to no translation in 
the image which is clearly incorrect.  Figure 6 (b) provides 
the search space for the Information Dimension where the 

correct translation parameter is detected.  For image pairs 
with extensive background relative to the region of interest, 
the Mutual Information measure is overwhelmed by the 
large number of background pixels much the same way it is 
overwhelmed by the presence of illumination change.  The 
chaos-based methods proposed in this paper, however, are 
immune to these large regions of no change. 
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Figure 5: Chaotic nature of moving objects in a field of 
view, (a) first image, (b) second image, and (c) phase plot.

 

 
(a) (b) 

Figure 6: Decision surface for area-based image registration, 
(a) using Mutual Information (b) using Information Dimension.

 
5. CONCLUSIONS & FUTURE WORK 

 
In this paper we proposed a chaos-theoretic approach to 

area-based image registration.  This approach was compared 
favorably to traditional Mutual Information-based measures. 
The chaos-based methods were demonstrated to perform 
superior to Mutual Information in situations where there is 
illumination change between the image pairs and in cases of 
extensive non-changing background.  Sensitivity of area-
based methods to illumination change has been noted by 
numerous authors but no solution has been proposed until 
this paper.  The chaos-theoretic approach is founded on the 
fact that illumination and contextual change are easily 
differentiated when viewed in phase space.  Using the 
Information Dimension with pre-processing to remove non-
fractal effects due to illumination provided the best overall 
performance.   Future work will address multi-modal image 
pairs where each image is from a different sensor. 
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