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ABSTRACT
Recently, generic object recognition (automatic image anno-
tation) that achieves human-like vision using a computer has
being looked to for use in robot vision, automatic categoriza-
tion of images, and retrieval of images. For the annotation,
semi-supervised learning, which incorporates a large amount
of unsupervised training data (unlabeled data) along with a
small amount of supervised data (labeled data), is expected
to be an effective tool as it reduces the burden of manual an-
notation. However, some unlabeled data in semi-supervised
models contains outliers that negatively affect the parameter
estimation on the training stage. Such outliers often cause the
over-fitting problem especially when a small amount of train-
ing data is used. In this paper, we propose a practical method
to prevent the over-fitting in semi-supervised learning, sup-
pressing existing outliers by sparse representation. In our ex-
periments we got 4 points improvement comparing conven-
tional semi-supervised methods, SemiNB and TSVM.

Index Terms— Object recognition, automatic anotation,
sparse representation, semi-supervised learning

1. INTRODUCTION

Automatic image annotation, in which the system automati-
cally assigns labels to an image, is one of the most significant
tasks in computer vision. Most of the conventional meth-
ods are based on a supervised labeling approach in order to
achieve an exact classification. However, it has been pointed
out that with this approach the training cost is extremely high
because an enormous amount of training data must be labeled
manually. To reduce the amount of such a troublesome work,
a semi-supervised approach has recently attracted consider-
able attention in machine learning [1][2][3][4][5]. The semi-
supervised approach inputs a large amount of non-labeled
data (unsupervised data) for the training as well as not so
much labeled data. Hence, it helps to improve the training
accuracy without using a lot of labeled data.

Descriptions of popular methods using semi-supervised
learning in text classification can be found in [2], which

introduces TSVM (transductive support vector machine) as
a classification model, and in [3], which introduces Sem-
iNB (semi-supervised naive Bayes classifier) as a generative
model. TSVM extends the well-known SVM so that it can be
trained not only with a few labeled data but also with a large
volume of unlabeled data. During the training, labeled data
first determine the margin, which classifies unlabeled data.
The former SemiNB is a semi-supervised version of Naive
Bayes (NB).

Both methods, especially in SemiNB, are adversely af-
fected by the influence of outliers in large amounts of unsu-
pervised data, because they both take whole the unlabeled
data as well as labeled data in the training process. The
TSVM limits the influence of the outliers only to data around
the margin. Therefore, the TSVM is not influenced as much
by outliers as SemiNB is, though it is inevitable that the out-
liers negatively affect the margin estimation. Furthermore,
the TSVM is a computationally expensive algorithm. Given a
large number of training data, it needs to take an approximate
approach that causes weak estimation of the margin.

In consideration of the drawbacks in a semi-supervised
approach, we propose an automatic image annotation method
where an effective semi-supervised tool, semi-supervised
canonical correlation analysis (semi-CCA) [4], and sparse
representation [6] collaboratively suppress the influence of
outliers. Fig. 1 shows the flow of the proposed method. First,
subspaces that maximize the correlation between image fea-
tures and label features are generated by semi-CCA, using
a small amount of labeled data and much unlabeled data.
Semi-CCA extends canonical correlation analysis (CCA), so
as to avoid over-fitting when it has a few (labeled) training
data. Given a large amount of unlabeled data as well as the
labeled data, it grabs a global distribution. Since the trained
distribution is affected by outliers somewhat, we adopt Regu-
larized Orthogonal Matching Pursuit (ROMP) [7], one of the
handy sparsing algorithms. Using sparse representation, it is
possible to achieve the automatic annotation that utilizes an
abundance of unlabeled data for the semi-supervised learning
that is robust to the influence of outliers.
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Fig. 1. System flowchart of proposed method.

2. SUBSPACE GENERATION

Due to the high cost of preparing correct labels as training
data in automatic image annotation, it is desirable to em-
ploy a semi-supervised approach which uses unlabeled data
instead of some of labeled data. In this section, we discuss
a subspace generation method using the semi-supervised ap-
proach called Semi-supervised Canonical Correlation Analy-
sis (semi-CCA) [4]. The semi-CCA is an extended version of
Canonical Correlation Analysis (CCA) so that it substitutes
unlabeled data for some labeled data. Both methods find the
subspace that maximizes a correlation between two different
types of features. In this paper, the relationship (correlation)
between an image and the accompanying labels are obtained.

2.1. Semi-CCA

Let {X(L),Y(L),X(U)} be a training data set, where X(L) =
{xn}N

n=1 and Y(L) = {yn}N
n=1 are N labeled data, and

X(U) = {xm}M
m=1 is M unlabeled data. x and y indicate

image feature and label feature, respectively (See 2.2). The
aim of Semi-CCA or CCA is to find the optimum subspace
that maximizes a correlation between projected x and y:

r(wx,wy) =
wT

x S(L)
xy wy√

wT
x S(L)

xx wx

√
wT

y S(L)
yy wy

(1)

where wx and wy are projection vectors to the subspace from
the original feature space x and y, respectively. S(L)

∗∗ indi-
cates each variance-covariance matrix within the labeled data.
For example, S(L)

xy = N−1
∑N

n=1 xnyT
n .

If unlabeled data X(U) is not given as the training (in other
words, in the case of normal CCA), all that can be done is just
to formulate the maximum problem in which the optimum wx

and wy are found to maximize Eq. (1) using a Lagrange mul-
tiplier. In that case, the formulation boils down to an eigen-
value problem.

When the amount of labeled data is not adequate, the ob-
tained subspace is inefficiently overfitted to the training data.
Hence, unlabeled data are added for correcting a global struc-
ture of data distribution in the subspace. In order to do that,
PCA is employed using the concept of semi-CCA [4]. In
a similar way to CCA, a projection matrix of the PCA can
be calculated by solving an eigenvalue problem, in which a
variance-covariance matrix of the data is maximized under a
normalized orthogonal constraint.

As mentioned above, semi-CCA can be expressed as the
combination of two factors: CCA with labeled data and PCA
with all data including unlabeled data. Therefore, the semi-
CCA formulation is also obtained by combination of the two
eigenvalue problems, as in Eq. (2). A projection matrix can
ultimately be obtained from the upper eigenvalues using semi-
CCA.

B
[
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]
= λC

[
wx
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]
(2)

where,
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[
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xy
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yx 0

]
+ (1 − β)

[
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0 S(L)

yy

]
(3)

C = β

[
S(L)

xx 0
0 S(L)

yy

]
+ (1 − β)

[
IDx 0
0 IDy

]
(4)

and Sxx = (N +M)−1
∑N+M

n=1 xxT is a variance-covariance
matrix of all image feature vectors including unlabeled im-
ages. IDx and IDy are identity matrices with the size Dx×Dx

and Dy × Dy , respectively. Note that the first term and the
second term in Eq. (3) and (4) indicate the terms related to
eigenvalue problems of CCA and PCA, respectively. β is a
trade-off parameter which determines the effects of CCA and
PCA.

The image feature and the label feature are connected via
latent variables z in the subspace. These variables can be
calculated by applying the conditional Gaussian model (For
more details, see [4]). After this, we can rewrite the training
and test data with the latent variables z for the sake of consid-
eration in the subspace.

2.2. Image Feature and Label Feature

Each image is first divided into small subregions using Nor-
malized Cuts [8]. In each subregion, the following features
are extracted:

• Color : Statistics of RGB, HSV, Lab, and YCbCr
• Gabor : Gabor filter and Laplacian-of-Gaussian
• Position : Center position of a region
• Geometric : Area of a region
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An image feature vector x is defined as a supervector, where
all these features are included. A label feature vector y is a
binary vector, where each label is assigned in the subregion
or not.

3. ANNOTATION

Recently, classification methods based on sparse representa-
tion, in which test data is represented as a linear combination
of sparse bases, have been drawing attention in image pro-
cessing [9][10]. It was reported in these papers that classi-
fication results showed favorable robustness of sparse repre-
sentation against outliers. In this paper, we set out to suppress
the effect of outliers that unintentionally appearwhen there is
a large amount of unlabeled data, by employing sparse repre-
sentation.

If a sufficient amount of training data is prepared, an in-
put image ztest in the subspace can be represented as a linear
combination of the training data. Our aim is to find sparse
coefficients associated with each training data. Those entries
are mostly zero, except for a few elements. This can be for-
mulated as a minimizing problem with respect to a coefficient
vector α in Eq. (5).

min
α

||α||ε s.t. ztest =
N+M∑
n=1

αnzn = Zα (5)

where Z ∈ RDz×(N+M) is a training data matrix (Dz is
a dimension of subspace feature). ||α||ε indicates lε norm,
which is the number of almost-zero elements in α, given by
||α||ε = (N + M)−1# {n|αn ≤ ε} with an experimentally-
determined small value ε. However, it is computationally
difficult to find the optimum vector in Eq. (5) because ||α||ε
is indifferentiable. In this paper, we consequently adopt one
of the popular greedy algorithms, Regularized Orthogonal
Matching Pursuit (ROMP) [7] to solve this optimum prob-
lem.

At the end, the test data can be restored by multiplying
a training data and the obtained vector α̂ as ẑtest = Zα̂.
By taking an inner production between the test data and the
restored data, a restoration ratio fc of the label class c can be
calculated as

fc =
ztestT ẑtest

c

||ztest||2||ẑtest||2
=

ztestT Zcα̂c

||ztest||2||ẑtest||2
(6)

where Zc is a training data matrix that only contains the data
given the label c, and α̂c is a coefficient vector associated
with the training data in Zc. The restoration ratio fc im-
plies a confidence of the class c. Therefore, multi-label clas-
sification can be realized by calculating all the confidences
fc(c = 1, · · · , C) (C is the number of label classes).

4. EXPERIMENTS

4.1. Experimental conditions

For image annotation experiments, we used a STAIR image
data set [11], which contains 534 images along with pixel-
wise 5 labels ( “Sky”, “Tree”, “Road”, “Grass” and “Build-
ing.”) In our experiments, the training and test are conducted
using features in each subregion, which is divided by Normal-
ized Cuts. Labeling accuracies for each class and their aver-
age are calculated by accumulating the subregion results. The
accuracy was evaluated with 3-fold cross validation. Images
for the training and the test were randomly selected (400 im-
ages for the training and 134 images for the test) three times
for each validation.

We conducted two experiments to evaluate our proposed
method. In the first experiment, we compared with conven-
tional semi-supervised methods: “SemiNB” and “TSVM”.
Secondly, we examined these methods in a supervised man-
ner; a supervised variation of our method was compared
with “NB” and “SVM,” just to see the effectiveness of semi-
supervised approach. Here we employed CCA instead of
semi-CCA, given a full set of labeled data.

4.2. Results and Discussion

The results of semi-supervised and supervised approaches are
shown in Table 1 and Table 2, respectively. Fig. 2 summarizes
the results. As shown these tables and figure, the labeling ac-
curacy of our method is higher than not only the other semi-
supervised approaches but also the supervised approaches,
such as SVM. The other methods, SVM and NB, suffer de-
creased accuracy in the semi-supervised case. This is, in gen-
eral, because conventional approaches make extensive use of
unsupervised data, and their classifiers were consequently af-
fected by unsupervised factors, especially outliers. On the
other hand, our approach increases the accuracy in the semi-
supervised case. This is considered to be due to the benefit of
semi-supervised learning, which helps the classifier to catch
the global structure of data distribution in the case where there
is a very small amount of labeled data for the training (due to
the effective suppression of outliers using sparse representa-
tion).

Comparing the results of “Proposed(supervised)” and
“ROMP” in Fig. 1, we can see that our method’s accuracy
is much higher than the other. The only difference in their
methods is that the former approach projects image and la-
bel features using CCA, while the latter does not. In sparse
representaion such as ROMP, it is known that these methods
better perform when the training data is Gaussian or Bernoulli
distributed. As previously described, the projected image or
label feature are modeled by Gaussian distribution in semi-
CCA. This means that ROMP is compatible with CCA (or
semi-CCA), and thus, we believe, our proposed method best
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Table 1. Labeling accuracies for comparison of proposed
method and conventional methods (%).

Label Sky Tree Road Grass Build. Ave.
SemiNB 25.3 30.5 70.6 47.5 31.3 41.0
TSVM 82.8 62.0 83.3 74.4 68.6 74.2

Proposed 87.2 66.0 84.4 80.1 75.9 78.7

Table 2. Labeling results within supervised approaches (%).
Label Sky Tree Road Grass Build. Ave.
NB 43.2 26.7 73.8 54.3 33.1 46.2

SVM 87.8 57.1 85.5 76.9 65.2 74.5
ROMP 54.5 39.2 51.5 44.5 39.9 45.9

Prop.(supervised) 85.0 63.7 89.6 75.4 73.2 77.4

performed due to their synergistic effect, in addition to mere
outlier-suppression.

5. CONCLUSION

In this paper, we proposed an effective image annotation
method, which suitably combines a semi-supervised ap-
proach, Semi-supervised Canonical Correlation Analysis
(semi-CCA), and sparse representation, Regularized Orthog-
onal Matching Pursuit (ROMP). Semi-supervised learning
has the advantage of being able to capture a global structure
of the true data distribution even when given only a small
amount of labeled training data. However, outliers included
in unsupervised data often give the negative effect to the clas-
sifier construction. Our approach suppresses such outliers
in terms of sparse representation in the subspace which is
created using semi-CCA.

The experimental results showed the effectiveness of
our proposed method satisfactorily. While conventional
semi-supervised approaches decreased the labeling accu-
racy compared with their supervised versions, our sparse-
representation-based approach, on the contrary, increased the
accuracy, taking advantage of semi-supervised learning fully.
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