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ABSTRACT

Shape matching in the spectral domain has gained great
popularity in recent years. Most algorithms, however, rely
on invariant global spectral embeddings of the shapes to find
correspondence, where spatial neighborhood information
is not explicitly incorporated into the matching procedure.
Misalignments of global as well as local structures are of-
ten resulted due to the lack of spatial guidance. In this
paper, we identify a number of ambiguities existing in spec-
tral embedding and matching, and subsequently propose a
general framework to improve the matching coherence. At
the center of the framework is a hybrid spatial-awareness
spectral embedding (SASE), which allows various neighbor-
hood and topological information, such as pair-wise distance,
relative angles w.r.t. object centers, to be integrated into
commute-time (CT) embeddings. A probabilistic expecta-
tion maximization (EM) algorithm with imposed regularity is
employed to seek an optimal matching of the SASE embed-
dings. Experimental evaluations of the algorithm on 2D and
3D data demonstrate both the effectiveness and robustness of
our approach.

Index Terms— point matching, spectral graph

1. INTRODUCTION

The analysis of 2D/3D shapes is a fundamental problem
in many image understanding applications such as object
recognition, tracking and brain mapping. Matching the input
shapes, usually defined as the boundaries of the areas of in-
terest, is often a prerequisite step for other analysis tasks to
be carried out. Spatial domain approaches [1, 2, 3, 4] directly
work in the 3D Euclidean space, and usually certain regular-
ization constraint is imposed to ensure the smoothness and
regularity of the estimated correspondence and deformation
field. Spectral based methods [5, 6, 7, 8, 9], on the other hand,
first map the input shapes or points into a low dimensional
space and then seek the alignment in the spectral embedding
space [10] through graph matching.

Spectral matching is pioneered by analytic methods
[11, 12] that compute point correspondence through eigen-
decomposition of the graph’s adjacency matrices. Recently a

variety of probabilistic approaches [13, 6, 8, 9] have been de-
vised to enhance the robustness in handling graph variabilities
and outliers. Mateus et al. [6] demonstrate the capability of
Laplacian matrices in capturing the properties of locally-rigid
structures, and subsequently propose an articulated shape
matching algorithm that combines Laplacian embedding with
probabilistic point matching. Escolano et al. [8] take a sim-
ilar point-based approach, where each node of the graph is
mapped to a point on a low dimensional manifold through the
commute-time (CT) embeddings [14]. Sharma et al. [9] ex-
tend the solution in [6] through a normalized commute-time
embedding. The eigenvalue-eigenvector ordering and sign
issues are tackled using the eigensignature (histogram) which
is invariant to the isometric shape deformations.

While being able to achieve greater matching flexibilities
than spatial domain algorithms, spectral algorithms have a set
of limitations. Without a Euclidean coordinate system as the
reference, the information maintained in spectral embeddings
is mainly composed of topological connectivity relationships
rather than physical distances/orientations among neighbors.
Since graph construction from scattered points is inherently
a discrete procedure, flip and reflective ambiguities can be
easily resulted — a rather small perturbation to the spatial
locations of the vertex points may dramatically alter the un-
derlying structure of the global and local graph components.

Our proposed framework: in this paper, we identify
a number of ambiguities existing in spectral graph embed-
dings and matchings, and as a remedy to improve the coher-
ence, a general framework is proposed. At the center of this
framework is a hybrid spatial-awareness spectral embedding
(SASE), which allows various geometric information to be
integrated into spectral embeddings. To match SASEs, we
adopt a probabilistic expectation maximization (EM) formu-
lation with imposed regularity in the spectral domain. The
combined framework proves to be effective in improving the
matching accuracy and robustness, as well as removing spec-
tral ambiguities.

2. METHODS

Let A and D be the adjacency and degree matrices of a graph
G = (V,E). Based onA andD, various graph Laplacian ma-
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trices can be generated. A common example is the combina-
torial Laplacian matrix L = D−A. The set of all eigenvalues
of L is called its spectrum, and they can be calculated through
the generalized eigenvalue problem Lv = λDv, where v is
an eigenvector. For each vertex Xi in the graph, the vec-
tor (v2(i), v3(i), ...vK+1(i)) defines a K-dimensional spec-
tral embedding.

Spectral embeddings contain a fair amount of topological
and geometric information, therefore can be used to match
point sets. For two given point sets in 3D Euclidean space,
certain graph construction algorithm, e.g. Delaunay triangu-
lation, needs to be applied to convert them to graphs, and gen-
erate the weight matrices accordingly. The graphs can then be
matched through the optimization of certain objective func-
tion defined over their spectral embeddings. The estimated
correspondence, when mapped back to the original Euclidean
space, provides an alignment for the input point sets.

2.1. Instability and ambiguities in spectral embeddings
and matching

Comparing with spatial-based methods, spectral methods
have the advantage of better capturing the essential shape
information, which leads to more power in matching and
recognizing ’similar’ shapes. Despite the versatility and flex-
ibility, spectral methods possess a set of inherent limitations
as well.

Flipping-induced matching instability and inconsis-
tency After spatial points are mapped into spectral domain,
the Euclidean coordinate system ceases to exist as a refer-
ence. As a result, the concepts of “above”, “below”, “left”
and “right”, which describes the relative position and orien-
tation relationships among spatial points, are no longer ap-
plicable within spectral embeddings. Furthermore, matching
of the embeddings captures topological similarity instead of
spatial proximity, which reduces spatial orientation and scale
to an unimportant role in this procedure. As a consequence of
these two factors, alignment instability and inconsistency are
prone to occur in spectral domain, due to the lack of spatial
guidance. An example is given in Figure 1(a). In term of
shape similarity, the flipped version of the left diamond shape
is closer to the right one, therefore the estimated correspon-
dence from spectral matching would be ABCD ↔ dabc.

(a) (b)

Fig. 1. Ambiguities existing in spectral embedding and
matching.

For dynamically changing shapes, e.g., in human track-
ing, the flipping could lead to undesirable matching insta-
bility. Take Fig. 1(b) as an example, where the vertex A is
moving down, andC moving up. The motion in the Euclidean
coordinate system is continuous, while the structural changes
are discrete under the graph embedding domain. Flipping in
matching results occurs in parallel with structural changes.
At the beginning, the matching is ABCD ↔ A′BC ′D.
At certain point, however, the alignment will be flipped to
ABCD ↔ DA′BC ′ due to the fact that the flipped diamond
is more “similar” to the original shape. The tipping point
is dependent on the graph neighborhood structure as well
as graph weight setup, and Delaunay triangulation plays a
deciding role if full graph is used.

Symmetric/Reflective ambiguity For a symmetric shape,
reflecting it along the symmetry axis would yield an identical
object. Without a spatial reference, matching ambiguity could
be easily resulted, which is illustrated in Fig. 1(b). For the
moving diamond shape, B could be mapped to match either
B or D, and vice versa. In many computer vision applica-
tions, for example optical flow estimation, such a reflection
as well as the estimated correspondence will generate illegit-
imate results.

3. SPATIAL-AWARENESS SPECTRAL EMBEDDING
(SASE) AND MATCHING

To overcome the aforementioned drawbacks in many spectral
graph matching algorithms, we propose a Spatial-Awareness
Spectral Embedding (SASE) and Matching framework in this
paper to handle various embedding and matching ambigui-
ties. The basic idea of Spatial-Awareness is to integrate as
much relevant information as possible, such as discriminative
local features or powerful geometric relationships beyond the
simple weights or pair-wise distances on edges, into the spec-
tral embedding and matching procedure, through which the
ambiguities will be greatly reduced or even totally eliminated.

To test the concept, we choose neighbors angles w.r.t. the
point-set center as the basis for the additional spatial infor-
mation. Fig. 2(a) shows a group of two dimensional points
(in green color). The red dot is the estimated center, through
averaging the Euclidean coordinates of the point set. Integra-
tion of the additional spatial information can be carried out
at different stages of the embedding and matching procedure.
In this paper, we tackle the problem at the Laplacian matrix
setup step. For each connected neighboring vertex pair i and
j, other than the edge distance, we also calculate θij , their an-
gle w.r.t the center. The corresponding Laplacian weight Wij

is formulated as

Wij = e
‖xi−xj‖2

σ2
s

+
‖θij‖2
σ2
a (1)

where σs and σa are the scale parameters (standard deviation)
for edge distances and angles, respectively. If i and j are not
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connected, Wij = 0. The same procedure can be conducted
for 3D point sets, as shown in Fig. 2(b).

(a) (b)

Fig. 2. Neighbors’ angle w.r.t. the point-set center as the basis
for additional information in SASE.

Since all θij are computed based on the same point-set
center, integrating angle into the graph weights puts all neigh-
boring structures into a unified framework. Flipping case in
Fig. 1 can be avoided due to the imposed global control. On
the other hand, as the angles represent the relative relations
among neighbors, the resulted spectral embedding still allows
shapes to be matched in a rotation and scaling invariant man-
ner.

With the new “weights”, we define our SASE based on
a popular spectral embedding scheme: Commute Time (CT).
Let G = (PX , EX) be the undirected graphs generated from
point-sets PX , where EX is specified by certain graph con-
struction scheme and the number of nodes N = |VX |. The
weight matrix WP is defined as in Eqn. 1, and correspond-
ing degree matrix is D. Let LX = DXWX = ΦXΛXΦT be
the eigendecompositions of the Laplacian matrix of the graph,
where X is the diagonal eigevalue matrices, and ΦX the cor-
responding eigenvector matrix. The volumes of the graph is
defined as volX = trace(DX). The SASE embedding is de-
fined as:

Θ̂(i)
X√
volX

= (
1√
λ

(2)
X

φ
(2)
X (i)...

1√
λ

(d+1)
X

φ
(d+1)
X (i))T (2)

This justification of using CT lies in its strong robustness
against modifications of graph structures, as well as its ability
to maintain the Euclidean distance between nodes within the
embeddings.

4. MATCHING SASES

Matching two SASEs can be reduced to finding a non-rigid
alignment for two point sets in high-dimensional Euclidean
space, where the dimension d is the number of eigenvectors
chosen for the embedding. In all the experiments conducted
in this paper, we chose d = 5 as the first six eigenvectors
usually contain enough shape information for matching. To
solve this problem, we adopted the probabilistic Expectation-
maximization (EM) algorithm formulated in the Coherent

Point Drift (CPD) algorithm [3] as well as in the Commute-
time matching work by Escolano et al. [8]. CPD is appropri-
ate in this regard because it is known of handling non-rigid
alignment for an arbitrary number of dimensions.

Let i ∈ VX and j ∈ VY be nodes of graphs X and Y
and let T be a non-rigid transformation with aligns the SASE
embeddings Θ̂X and Θ̂Y . Then we can define ˜SASE(i, u) =
minT ||Θ̂X - Θ̂Y ||2 = minT ′

˜SASE(i, u) where

˜SASE(i, u) =
√
volXY

d+1∑
z=2

1√
λ

(z)
XY

(φ(z)
X (i)−T

′
(φ(z)

Y (u)))2

where volXY = volX volY , λ
(z)
XY = λ

(z)
X λ

(z)
Y , and T

′
aligns

non-rigidly the SASE embedding φY with those of φX . Let
Φ(u)

Y be the centers of d-dimensional Gaussian Mixtures
(GMM). Aligning SASE is formulated as the minimization
of

E(W,σ2) =
1

2σ2

N,M∑
i=1,u=1

Piu
˜SASE(i, u)+

NP

2
logσ2+γ(W )

Given the M × N probability matrix P with entries
Pui, G a M ×M Gaussian kernel matrix where G(u, v) =
exp − 1

2σ
2SASE(u, v), and matrices ΘT

X , ΘT
Y with dimen-

sions N × d and M × d respectively, the parameters of W
can be estimated by solving:

(G+ λσ2diag(P1)−1)W = diag(P1)−1P Θ̂T
X − Θ̂T

Y (3)

The following table summarizes the overall procedure of
the SASE matching algorithm.

Algorithm 1 Pseudo-code of our SASE embedding and
matching algorithm.
Input: A pair of 2D/3D point sets X and Y .
• Triangulate point-sets to meshes and construct a weighted
graph.
• Calculate pair-wise angles θij w.r.t. the point-set center.
• Embedding:
• Compute Laplacian matrices based on Eqn. (1).
• Commute-time embeddings Θ̂(t)

X and Θ̂(u)
Y based on the

Laplacian matrices.
•Match SASE embeddings based on probalistics EM:
• Initialzation: W = 0, λ > 0,

• σ2 = 1
DNM

∑t,u=1
M,N

∥∥∥Θ̂(t)
X − Θ̂(u)

Y

∥∥∥2

• Construct G: gij = exp
− 1

2β2

∥∥∥Θ̂
(i)
Y −Θ̂

(j)
Y

∥∥∥2

• EM optimization, loop:
• E-step:

pui = exp
− 1

2σ2 ‖Θ̂iX−(Θ̂uY +G(u,·)W )‖2∑v
M exp

− 1
2σ2 ‖Θ̂iX−(Θ̂v

Y
+G(v,·)W )‖2+ w

1−w
(2πσ2)D/2M

N

• M-step: Solve Eqn. (3). The aligned embedding set
is T = (Y,W ) = Y +GW
• The probability of correspondence is given by P
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5. EXPERIMENTAL RESULTS

To demonstrate the effectiveness brought by our SASE em-
bedding in reducing spectral ambiguities, we perform exper-
iments on both 2D and 3D shapes. Comparisons are made
with state-of-the-art spatial and spectral matching methods.
The Coherent Point Drift (CPD) algorithm proposed by My-
ronenko et al. [3] has been used as the spatial category rep-
resentative, due to its great popularity in recent years. The
comparison with spectral solutions is with the matching algo-
rithm proposed by Escolano et al. [8] in CVPR’2011.

(a) (b)

(c) (d)

Fig. 3. Experiment on 2D human figures. (a) input point
sets and the constructed triangulations. (b) matching result
from CPD. (c) result from Escolano’s method. (d) result from
SASE matching.

The first experiment is conducted on a pair of 2D human
figures with manually extracted boundary points. Delaunay
triangulation has been used to define point neighborhoods and
construct the connection graphs. The resulted triangulation
is shown in Fig. 3(a). The two point sets mainly differ in
the right arm area. Other parts of the bodies are relatively
well corresponded, which implies that the deformation field
would be vastly nonlinear around the elbow area, if a perfect
matching is achieved. The matching result using the CPD is
shown in Fig. 3(b). As a typical spatial domain matching al-
gorithm, CPD assumes the estimated deformation field should
be smooth with regularity. Not surprisingly, it fails to account
for the huge position disparities around right arm. Matching
result based on Escolano’s method, as shown in Fig. 3(c), has
both the flipping and reflective ambiguity issue. Mirror re-
flective mismatches occur below the shoulder — right hand
in other figure is mapped to left hand in the other. Match-
ing result from our SASE-based method is given in Fig. 3(d).
As evidence, our method, with the additional spatial angle
information integrated in SASE embeddings, achieved rather
accurate matchings across the board.

The second experiment is carried out using a pair of 3D

(a) (c) (e)

(b) (d) (f)

Fig. 4. Example of 3D Shape. (a) and (b) are the CT em-
bedding and SASE embedding; (c) and (d) are the results of
Escolano’s method and SASE; (e) and (f) are zoom-in of (c)
and (d).

human surface point sets obtained from the Multi-view Sil-
houettes [15] project. The graphs are constructed based on
the surface meshes available in the data sets. The embedding
and matching results are shown in Fig. 4. Like in the 2D ex-
periment, matching using Escolano’s method (Fig. 4(c)) still
generates mirror reflective mismatches, where left hand/foot
are incorrectly mapped to right hand/foot. Fig. 4.(e) provides
a “zoom-in” version to demonstrate the details. Matching
results and zoom-in from our SASE-based method is given
in Fig. 4(d) and (f), where the flipping/reflective ambiguities
have been removed and perfect matching has been achieved.
To explore the underlying reason for matching ambiguities as
well the remedy, we display the “CT alone” (as in Escolano’s
method) and our SASE embeddings in Fig. 4(a) and (b) re-
spectively. Intuitively speaking, the ambiguities existing in
CT alone come from the twisting structures below the chests,
which makes left-to-left and left-to-right matchings equally
plausible. The SASE embeddings, on the other hand, elimi-
nate the twisting with the help from the spatial information,
and the matching becomes unique and straightforward under
the spectral embedding domain.

6. CONCLUSION

In this paper, we identify a set of inherent spectral embedding
ambiguities, and propose a general framework to improve the
matching coherence. Various spatial features can be added
into the graph construction, Laplacian embeddings, or match-
ing steps. Pair-wise angles w.r.t. point-set center have shown
the potential to greatly reduce ambiguities and achieve robust-
ness, and a direction of future investigation would be the ex-
ploration of other choices of geometric integration.
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