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ABSTRACT

This paper presents a performance analysis of measures used

for assessing similarities between patches. Compared to sub-

jective ground thruth, our results indicate that some metrics

are more suitable than others in a context of patch matching.

This conclusion is confirmed by an experiment on non-local

means (NLM) denoising algorithm. The denoising quality de-

pends on the chosen similarity metric. In the best case, the

gain is of 1.3dB compared to a classical SSD-based denois-

ing algorithm.

Index Terms— similarity metric, examplar-based, de-

noising.
1. INTRODUCTION

The goal of a similarity metric, also called fidelity measure,

is to provide a quantitative score that describes the degree

of similarity or, conversely, the dissimilarities between two

signals [1, 2]. This kind of metric is widely used in image

processing algorithms based on patches similarity, so called

examplar-based [3]. These algorithms assume that any patch

in the image can be approximated with one or more patches in

the same image. For example, the denoising algorithm based

on NLM updates the pixels values of each patch with a lin-

ear combination of the corresponding pixel values in its most

similar patches. Thereby, the result of this algorithm is highly

dependent on the fidelity metric used to find similar patches.

For this purpose, different metrics can be used and can be

classified into three main categories : pixel-based, statistic-

based and texture-based similarity metrics. Pixel-based met-

rics compute the similarity between two patches/images using

the differences between their pixel values. For instance, the

Lp-norm belongs to this category. Statistic-based metrics are

based on the similarity between probability density distribu-

tions of pixel values in patches. A review of classical statistic-

based metrics can be found in [4]. In this paper, we consider

the Bhattacharyya probability density [5, 6], the Normalized

Mutual Information (NMI) and the Kullback-Leibler Diver-

gence (K-Div). Others texture characteristics-based similar-

ity metrics such as the magnitude of the dominant gradient in

patches are proposed in [3, 7, 8].

In this paper we evaluate the performance of a set of simi-

larity metrics. For this purpose, we first perform a subjective

analysis in order to compare the similarity results provided

by observers to the objective quality scores of the considered

fidelity measures. The influence of these metrics is illustrated

in the context of denoising with NLM algorithm.

The paper is organized as follows. In Section 2, the classi-

cal similarity metrics are presented. A subjective statistical

analysis of these metrics is discussed in Section 3. Their per-

formances in the context of denoising are presented in Section

4. Finally, Section 5 concludes the paper.

2. SIMILARITY METRICS: BACKGROUND

This section presents an overview of the most widely used

similarity metrics in image processing algorithms. All these

metrics provide a similarity score between two candidates. In

the following, we present six state-of-the-art metrics belong-

ing to the three aforementioned categories.

2.1. Pixel-based similarity metrics

2.1.1. Lp-norm

The Lp-norm or p-norm of a given signal x = (x1, x2, . . . , xn) ∈
Rn, p ≥ 1, is defined as : ‖x‖p = (

∑n
i=1 |xi|p)

1

p .

In practice, three main values of p correspond to the three

most used norms :

• L1-norm, or Manhattan metric: ‖x‖1 =
∑n

i=1 |xi|.
• L2-norm, or Euclidean norm : ‖x‖2 = (

∑n
i=1 |xi|2)

1

2

.

• L∞-norm, or Chebyshev norm : ‖x‖∞ = max1≤i≤n |xi|.

The L2-norm is the simplest and most used fidelity met-

ric in the literature of image processing. It computes the

similarity of two given patches x and y as the sum of

squared intensity differences (SSD) of their pixels values:

SSD(x, y) =
∑n

i=1 (xi − yi)
2
. The MSE, which is the

mean of SSD, is usually converted into a peak signal-to-

noise ratio (PSNR) measure for assessing degradation qual-

ity of a noisy image compared to its original version [1]:

PSNR = 10log10
L2

MSE
. L is the range of pixel intensity

(255 for gray-scale image).

This metric has many advantages : symmetry, convexity

2070978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



and energy preserving property. However, it does not match

the perceived visual quality. Two patches x and y having

the same degree of similarities with a given patch z i.e.

SSD(x, z) = SSD(y, z), may be visually dramatically

different.

2.1.2. SSIM (Structural Similarity Information Measure)

Structural Similarity Information Measure (SSIM) computes

the similarity between two images or patches x and y. The

similarity score is computed based on three terms: lumi-

nance (l(x, y)), contrast (c(x, y)) and structure (s(x, y)) as :

SSIM(x, y) = [l(x, y)]
α · [c(x, y)]β · [s(x, y)]γ . Here α, β

and γ are parameters used to adjust the relative importance

of each of the three components [9]. A specific form of the

SSIM index where α = β = γ = 1 is usually used:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
xµ

2
y + C1)(σ2

xσ
2
y + C2)

where C1 = (K1L)
2
, K1 << 1 , C2 = (K2L)

2
, K2 << 1

and L = 255 for gray scale images.

2.2. Probabilistic-based similarity metrics

Another approach to compute the similarity between two

patches is to consider their probability density function (pdf).

This kind of metric provides a high degree of similarity when

their pdfs are close. A histogram, which represents the fre-

quency of each interval of values (also called bin), provides

the basis for a non-parametric estimation of the pdf [4]. The

pdf of a patch x is given by : p(x) = h(x)
n

, where h(x) is the

histogram of the pixel values and n the number of pixels in

the patch.

2.2.1. NMI (Normalized Mutual Information)

The mutual information I(X;Y ) of two discrete random

variables X and Y computes the amount of common infor-

mation between them as :

I(X;Y ) =
∑

xi∈X

∑

yi∈Y p(xi, yi) log(
p(xi,yi)

p(xi)p(yi)
), where

p(xi) is the probability of xi. Usually, the normalized

form of the mutual information is used : NMI(X,Y ) =
I(X;Y )√

H(X)×H(Y )
. H(X) and H(Y ) are respectively the entropy

of X and Y defined as : H(X) = −∑

xi∈X p(xi) log p(xi).
NMI metric is bounded between 0 (if X and Y are indepen-

dent) and 1 (if their pdf are exactly the same).

2.2.2. KL-Div (Kullback-Leibler Divergence)

The Kullback-Leibler divergence (KL-Div) of two probability

distributions X and Y is defined as:

DKL(X ||Y ) = H(X,Y )−H(X), where

H(X,Y ) = −∑

xi∈X,yi∈Y p(xi, yi) log p(xi, yi).
This metric is non-symmetric and is not upper-bounded. The

KL-Div is null when the distributions of the two patches are

exactly the same.

2.3. Hybrid distances : Bhattacharyya probability density-

based metric

Using NMI or KL-Div metrics to measure similarities be-

tween two samples, means that their closeness are only de-

pendant on their probability distributions. Figure 1 shows

that this information is not enough. The two patches are dif-

ferent although their probability distributions is the same. To

deal with this drawback, the authors in [5] combine the prob-

ability distribution with SSD as follow :

d(x, y) =
1

|x| × SSD(x, y)× dB(x, y) (1)

where dB(x, y) =
√

1−∑B
i=1

√

ρx(i)× ρy(i) is the Bhat-

tacharyya coefficient. ρx and ρy are the pdf of patches x and

y respectively. However, if the two patches have the same

distributions the Bhattacharyya coefficient dB is null no mat-

ter for the rotation. To be able to distinguish this case, the

distance is computed using the following formula [6]:

d(x, y) =
1

|x| × SSD(x, y)× (1 + dB(x, y)) (2)

In the rest of the paper we notice Bh1 the metric distance in

equation 1 and Bh2 the metric in equation 2.

(x) (y)

Fig. 1: Patches of 21 × 21 pixels estimated as similar using

the probability-based metrics ( dKL−Div(x, y) = 0
and dNMI(x, y) = 1) and quite different using SSD

(dSSD(x, y) = 5355).

2.4. Dominant orientation Template

The dominant orientation template (DoT) approach is related

to the Histograms-of-Gradients (HoG) based representation

[7, 8]. It computes the similarity of two patches by compar-

ing the orientations of their dominant gradients. Although this

measure does not take into account the difference of texture

values, it has the advantage to be robust to noise and illumi-

nation change.

3. SUBJECTIVE EXPERIMENT

3.1. Protocol

In order to provide a subjective performance analysis of the

aforedescribed similarity metrics, our experiments are con-

ducted on 100 natural images. For each image, two patches

of 21 × 21 pixels are chosen. As shown in figure 2.a, each

candidate patch is compared to a list of 14 patches composed

with its eight neighbors and six patches randomly selected

within the same image. These patches have been presented,
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(a) (b)

Fig. 2: (a) Part of the web page used for gathering users similarity decisions; (b) Agreement of observers’ similarity decisions.

in a web page 1 to 12 observers who have selected the three

first closest patches from the proposed list.

3.2. Results

Once the ranking has been performed, we investigate the sub-

jective and objective similarity scores how they match. For

this purpose, we compare the order of the best similar patches

given by observers with those obtained by metrics. The gen-

eral idea is to count the number of matches. For each metric

m, we count the number of matches Corr(m) =
∑

N
i=1

δ(i)

N
,

where N is the total number of patches candidates, and

δ(i) =

{

1 if Sim(i,m) = BM(i)
0 otherwise.

.

Sim(i,m) gives the index of the best similar patch to the

candidate Ψi according to the considered metric m whereas

BM(i) is the index given by observers.

However, for each candidate patch, the set of proposed

patches may contain similar patches, so that observers can

not easily choose between them. In this case, observers’

scores could be distributed on more than one patch as illus-

trated in figure 2.b. To deal with this problem, three main

constraints for computing the correlation between subjective

and objective scores are considered:

• constraint 1: we consider all the subjective scores. A

good match between subjective and objective scores is

obtained when one of the three most similar patches ac-

cording to observers corresponds to the best matching

patch with respect to the similarity metric.

• constraint 2: same as constraint 1 except that only can-

didate patches for which more than 50% of the ob-

1The web page is reachable at http://people.irisa.fr/

Olivier.Le_Meur/test/test.php

servers have the same decision are considered.

• constraint 3: we consider only candidate patches for

which more than 50% of the observers have the same

decision and this patch corresponds to the best match-

ing patch with respect to the similarity metric.

Figure 3 illustrates the results of correlation. One can mention

that, using each of the considered correlation constraint, the

similarity metrics based only on the probability distribution

i.e. NMI and KL-Div, have the worst results. This conclusion

is expected because the pdf helps to detect the patch struc-

ture but do not quantify dissimilarity between the collocated

pixels values in the two patches. Metrics based on dominant

gradient does not perform well simply because two patches

having similar structures may have totally different textures.

The best results are given when the SSD and pdf (Bh1 and

Bh2) are combined.

Fig. 3: Agreement between subjective and objective similarity

scores.
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4. APPLICATION : NLM DENOISING ALGORITHM

In this section we evaluate the influence of the four best cor-

related metrics with subjective results, i.e. SSD, SSIM, Bh1

and Bh2 on an examplar-based denoising application. Each

aforementioned metric is used to find the best similar patches

within the image. The best patches are then linearly combined

by using non local means (NLM) filter. The NLM denoising

approach [10]2 considers that each pixel p in the image I can

be estimated using a weighted average of collocated pixels

values in the most similar patches to the one centered on p

(Ψp) as : Î(p) =
∑

q∈I ω(p, q)I(q), where 0 ≤ ω(p, q) ≤ 1,

is the weight of the pixel q, defined as a function of the sim-

ilarity distance between the patch centered on q and Ψp :

ω(i, j) = 1
Z(i) exp (−

‖Ψi−Ψj‖2

2

h2 ). While Z(i) is a normaliz-

ing term to validate the constraint
∑

q ω(p, q) = 1. The value

of h which controls the decay of the exponential function may

have an important impact on the denoising results. So, we first

compute, for each similarity metric, the value of h that pro-

vides the highest PSNR average on 10 natural images. Figure

4 shows that Bh2 provides usually the highest PSNR. In terms

Fig. 4: PSNR values of NLM denoising results using different simi-

larity metrics and the best value of h.

of subjective quality,denoising results of Barbara noisy image

(figure 5.b.) show that Bh2 provides much better noiseless

image quality (figure 5.f) than SSD. The PSNR values of de-

noising results of standard test images summarized in table

1 show that even with a higher noise (σ = 40) this metric

provides an average gain of 1.3dB compared to SSIM, SSD

and Bh1. This conclusion is expected since by adding the

probability distributions to the SSD, Bh1 and Bh2 provide

more precise decisions on the similarity between patches that

considers both the structure and texture similarities.

5. CONCLUSION

This paper presents the performance of several similarity met-

rics. A subjective experiment involving 12 observers suggests

2We use the Gabriel Peyré’s matlab implementation of NLM algorithm

available at http://www.mathworks.com/matlabcentral/fileexchange/13619/

(a)

(c)

(e)

(b)

(d)

(f)

Fig. 5: NLM denoising results using different similarity metrics : (a)

original image ; (b) noisy image with σ = 25; (c) denoised

image using SSD; (d) denoised image using SSIM; (e) de-

noised image using Bh1; (f) denoised image using Bh2.

SSD SSIM Bh1 Bh2

barbara 19.74 19.37 18.88 20.87

boat 20.01 19.32 19.41 20.93

C.Man 18.47 18.26 17.65 19.5

couple 19.95 19.48 19.45 20.8

F.print 16.82 18.13 15.86 18.05

Lena 20.04 19.36 20.15 21.32

house 20.11 19.48 20.26 22.29

F16 21.08 20.12 21.2 23.39

Peppers 19.03 18.17 19.15 20.42

Babon 17.76 18.21 17.8 19.14

Mean 19.3 18.99 18.98 20.67

Table 1: PSNR values of denoising results (σ = 40).

that SSD which is a widely used similarity metric is not nec-

essarily the most correlated with subjective scores. By us-

ing a simple similarity metric combining SSD and the Bhat-

tacharyya coefficient (Bh2), the performance of the denois-

ing algorithm is improved showing better image quality com-

pared to SSD and SSIM.
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