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ABSTRACT
We consider an important class of signal processing problems
where the signal of interest is known to be sparse, and can be
recovered from data given auxiliary information about how
this data was generated. For example, a sparse green’s func-
tion may be recovered from seismic experimental data using
sparsity optimization when the source signature is known.
Unfortunately, in practice this information is often missing,
and must be recovered from data along with the signal using
deconvolution techniques.

In this paper, we present a novel methodology to simulta-
neously solve for the sparse signal and auxiliary parameters
using a recently proposed variable projection technique. Our
main contribution is to combine variable projection with spar-
sity promoting optimization, obtaining an efficient algorithm
for large-scale sparse deconvolution problems. We demon-
strate the algorithm on a seismic imaging example.

Index Terms— Sparsity optimization, variable projec-
tion, seismic imaging

1. INTRODUCTION

Sparse regularization has proven to be an indispensable tool in
many areas, including inverse problems [1] and compressive
sensing [2, 3]. If a signal y is known to have a sparse or
compressible (quickly decaying) representation y = Sx, this
information can be used to formulate optimization problems
of the form

min ‖x‖1 s.t. ‖ASx− b‖22 ≤ σ2, (1)

where A is a measurement matrix used to measure the true
signal y, b is a vector of data, and σ is a threshold that depends
on the characteristics of measurement error. In compressive
sensing, it is possible to obtain recovery guarantees given
properties of the true signal and A. In more general inverse
problems, these guarantees have not been found; it is there-
fore appropriate to consider (1) as a regularization approach
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to the least squares problem. For example, in the seismic set-
ting, where (1) has been particularly useful [4], A is a lin-
earized Born-scattering operator, S is the curvelet transform,
and b is seismic data. While there are several popular algo-
rithms that solve (1), e.g. SPArsa [5], the SPG`1 [6] algorithm
has been particularly useful for seismic imaging [7, 8, 9].

Many inverse problems contain unknown nuisance pa-
rameters that must be estimated in order to recover the solu-
tion [10]. In seismic imaging, the source wavelet is typically
unknown. The main contribution of this paper is to extend the
approach of [10] to the sparse inversion context, and derive
simple modifications of standard sparse solvers to incorporate
solutions of unknown nuisance parameters on the fly.

The paper proceeds as follows. In Section 2, we intro-
duce the seismic imaging problem with unknown wavelet,
and formulate it as an extended sparsity promoting optimiza-
tion problem (3). In Section 3, we review the ideas recently
proposed in [10] that allow nuisance parameters to be esti-
mated on the fly, and show how to incorporate these ideas
into existing sparsity promoting formulations. In Section 4,
we develop an extended SPG`1 algorithm to solve (3), and
we present numerical results in Section 5.

2. IMAGING WITH UNKNOWN WAVELET

Seismic imaging is an approach to obtain a gridded subsur-
face velocity perturbation y from seismic data, given a smooth
starting model. Experiments are conducted by placing explo-
sive sources on the surface and recording the reflected waves
with an array of receivers on the surface. The data, di, in this
case represents the Fourier transform of the recorded time se-
ries for frequency i. The corresponding modeling operator,
Fi, defines a linear relation between the recorded data for the
ith frequency and the velocity perturbation. The statistical
model for data given y is

di = αiFiy + εi, (2)

where εi is a statistical model for the measurement error,
which is typically modeled as Gaussian, and αi are unknown
complex source wavelet coefficients. Note that the model (2)
is no longer linear in the decision variables (x, α)—it is bi-
linear. Since the perturbation y is known to be sparse in the
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Curvelet frame C, formulation (1) has been successfully used
to recover y = Cx [4] when the source wavelet is known. In
full generality, the joint inverse problem for the perturbation
y and wavelet α is given by

min
x,α
‖x‖1 s.t

∑
i

‖di − αiFiCx‖22 ≤ σ2. (3)

Note that the α parameters make the problem more difficult,
because the forward model (2) is no longer linear in the deci-
sion variables (x, α), and the problem (3) is nonconvex.

3. VARIABLE PROJECTION

We begin by considering the problem

min
x,α

∑
i

‖di − αiFiCx‖22 s.t. ‖x‖1 ≤ τ . (4)

The relationship between (4) and (3) will be fully explained
in Section 4. In this section, we show how to use results
from [10] to design an effective algorithm for (4).

If we define X = {x : ‖x‖1 ≤ τ}, problem (4) is of the
form

P min
x∈X ,α

g(x, α) , (5)

where for any given x ∈ X , one can easily find

ᾱ(x) = argmin
α

g(x, α) . (6)

In fact, ᾱ(x) is available in closed form when the least squares
penalty is used in (4). The key idea in [10] is to consider the
modified objective

g̃(x) = g(x, ᾱ(x)), (7)

using the convenient formula

∇xg̃(x̄) = ∇xg(x̄, ᾱ(x̄)). (8)

This is basically a generalization of the variable projection
algorithm [11].

In the current setting this means that instead of solv-
ing (4), we can simply solve the modified problem

min
x

∑
i

‖di − ᾱi(x)FiCx‖22 s.t. ‖x‖1 ≤ τ (9)

using e.g. the projected gradient iteration

xk+1 = PX [xk − αk∇xg̃(x̄k)]

with ∇xg̃ computed via (8), with ᾱ(x) given by (6). By [10,
Corollary 2.3], a stationary point of (9) is also stationary point
of (4).

4. PROJECTED REGULARIZED INVERSION

In the previous section, we showed how to solve the extended
problem (4). However, the formulation (3) is more impor-
tant to us from the modeling perspective, since it is always
easier to provide a noise threshold σ than to figure out the
‘right’ sparsity level τ . In fact, the SPG`1 algorithm solves
formulation (1) by solving a series of subproblems that find
the sparsity level τ automatically given an input threshold σ.

In this section, we extend this approach to the pair of prob-
lems (3) and (4). First, define

v(τ) = min
x,α

∑
i

‖di − αiFiCx‖22 s.t. ‖x‖1 ≤ τ (10)

Suppose we find τ̄ such that v(τ̄) = σ2. Can we expect
that the corresponding minimizers of (4) coincide with the
minimizers of (3)? This question is answered in surprising
generality by [12, Theorem 2.1]: as long as any minimizer
x̄ of (3) satisfies

∑
i ‖di − αiFiCx̄‖22 = σ2, then the set of

minimizers of (3) and (4) match, and ‖x̄‖1 = τ̄ where v(τ̄) =
σ2.

This general result points to using the following strategy:
solve v(τ) = σ2 by Newton’s method

τk+1 = τk −
v(τk)− σ2

v′(τk)
. (11)

This is in fact the strategy used by SPG`1 to solve the prob-
lem (1), for an appropriately defined value function. In order
to implement this strategy, we have to be able to evaluate both
v(τ) and v′(τ) for (10).

Evaluating v(τ) is straightforward: we simply use the
projected gradient method detailed in Section 3. However,
v′(τ) is more difficult, since the most general variational re-
sults for value functions [12] require linearity of the forward
model, which is violated by (2). Nonetheless, if we treat
ᾱi := ᾱi(x̄) as fixed, then by [12, Theorem 6.2], we get

v′(τ) ≈ −

∥∥∥∥∥∑
i

ᾱiC
TFTi (di − ᾱiFiCx̄)

∥∥∥∥∥
∞

where x̄ solves (4) for τ .
We note that the expression above is an approximation to

the derivative, and the quality of the approximation remains
to be determined. If the source weight can be estimated fairly
quickly (so that after a finite number of iterations, it is no
longer changing), the approximation above becomes exact,
since problem (4) reduces to the standard LASSO problem
studied in [6].

For the experiments in the next section, we found that the
proposed Newton iteration gives nearly the same result as the
one with a fixed, ‘true’ source-weight. We also verified that
when we pick σ that is reachable within our computational
budget of 150 iterations, the algorithm correctly finds the root
v(τ) = σ; see figure 4 (b).
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5. NUMERICAL RESULTS

For the experiments we use a Matlab framework for seismic
imaging and modelling [13], and the CurveLab toolbox [14].
Both of these are freely available for non-commercial pur-
poses. The algorithm to solve 3 is based on the SPG`1 code
[15], which is also available for download.

We generate data for the velocity perturbation defined on
a 201 x 301 grid with 10 m spacing depicted in figure 1 for
6 frequencies between 5 and 25 Hz, 301 equispaced receivers
and 15 composite sources, all located at the top of the model.
We note that his leads to a underdetermined problem with
27090 equations and 60501 unknowns. We use SPG`1 to
solve (3) either with α fixed or with α estimated using the
procedure outlined above. Since there is no noise in this ex-
ample we use σ = 0 and run the algorithm for a fixed number
of iterations (100 in this case).

Note that there is a fundamental non-uniqueness in the
problem; if we multiply the source-weights with a constant
factor, we can compensate for this by dividing the recon-
structed model by the same factor. Therefore, we normalize
the results such that the source-weights for each reconstruc-
tion have the same norm (i.e.,

∑
i ᾱi(x)2 is the same for all

reconstructions).
The reference result using the true source signature is

shown in figure 2 (a). If we do not estimate the source sig-
nature and use αi = 1, we do not get a good reconstruction,
as is shown in figure 2 (b). Finally, if we estimate the source
signature according to the strategy outlined in this paper, we
obtain the result depicted in figure 2 (c).

The (normalized) optimal source weights ᾱ(x) evaluated
at the final results as well as the true source weight are de-
picted in figure 3. This shows that our approach is able to
recover both the model and the source weight. The conver-
gence histories of the SPG`1 algorithm are shown in figure
4.

6. DISCUSSION AND CONCLUSIONS

We have proposed a novel method for estimating nuisance pa-
rameters in the context of sparsity regularized inverse prob-
lems, and in particular we have focused on source wavelet
estimation in seismic imaging. The method draws on the idea
of variable projection in order to estimate nuisance parame-
ters on the fly, and can be implemented via a straightforward
modification to existing sparse solvers.

Numerical experiments demonstrate that the source wavelet
can be recovered successfully in this manner (figure 3), and
that the recovery of primary parameters (specifically of the
image) is improved when the wavelet is estimated (figure 2).

Note that after Section 3, we can already solve (4), but
nonetheless lot of effort is devoted in Section 4 to develop a
method for solving (3). The main point here is that while it is
difficult to come up with a reasonable value for τ in (4), it is
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Fig. 1. True perturbation used for numerical experiment

straightforward to come up with a good value for σ2 in (3). In
fact, given a finite computational budget, and no estimate for
σ2, one can always pick σ2 = 0 and perform a fixed number
of iterations. In this mode, the algorithm in Section 4 solves
several (4) problems inexactly, picking the corresponding se-
quence of τ values according to iteration (11). This is exactly
what was done to obtain the numerical examples in Section 5.
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Fig. 2. Reconstructed models for the true wavelet (a), a wrong
wavelet (b) and using the wavelet estimation procedure (c).
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Fig. 3. Amplitude (a) and phase (b) of the optimal source
weights evaluated at the models depicted in 2 (b) (red) and 2
(c) (blue). The true source weight is also shown (dashed line).

0 200 400 600
0

10

20

30

40

50

60

70

L1 norm of the solution vector

L2
 n

or
m

 o
f d

at
a 

m
is

fit

(a)

0 200 400 600 800
0

10

20

30

40

50

60

70

L1 norm of the solution vector

L2
 n

or
m

 o
f d

at
a 

m
is

fit

(b)

Fig. 4. Convergence histories using the true wavelet (dashed),
a wrong source weight (red) and the estimated source weight
(blue) when (a) σ = 0 and (b) σ = 15.
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