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ABSTRACT

We study the oversampled binary image sensor in [1] under noisy
scenario. The binary image sensor is similar to traditional photo-
graphic film with pixel value equal to “0” or “1”. The potential ap-
plication of the oversampled binary image sensor is high dynamic
range imaging. Since the pixel value is binary, we model the noise
as additive Bernoulli noise. We focus on the case that the threshold
in the binary sensor is equal to a single photon. Because of noise,
the dynamic range of the sensor is reduced. But the image sensor is
quite robust to noise when the light intensity value is large. We use
maximum-likelihood estimator (MLE) to reconstruct the light inten-
sity field, and prove that when the threshold is a single photon, even
if there is noise, the log-likelihood function is still concave, which
guarantees to find the global optimal solution. Experimental results
for 1-D signal and 2-D images verify our performance analysis and
show the effectiveness of the reconstruction algorithm.

Index Terms— High dynamic range imaging, photon-limited
imaging, diffraction-limited imaging, binary image sensor

1. INTRODUCTION

Moore’s law [2] claimed that the number of transistors could be
placed on an integrated circuit doubled approximately every two
years. There is a strong link between the pixel size of the CMOS
image sensor and Moore’s law [3]. When the pixel size becomes
small, the full-well capacity (i.e., the maximum photon-electrons a
pixel can hold) is reduced. This will result in low signal-to-noise
ratios (SNRs) and poor dynamic ranges. To benefit from the shrink-
ing of the pixel size, Fossum [4] proposed to build a binary sensor
that was similar to photographic film in which the light intensity in-
formation was presented as the density of the opaque silver grains.
Sbaiz et al. [5] proposed the concept of oversampled binary image
sensor in the name of the gigavision camera.

We gave a theoretical analysis of the binary sensor in [1]. We
showed that if we could build a binary sensor by modifying standard
memory chip technology, the pixel size would be about 50 nm [6].
This value is far below the diffraction limit of the lens. Thus the
imaging sensor is actually an oversampling device. We can use this
spatial redundancy to compensate the information loss due to one-bit
quantizer, as in oversampled analog-to-digital (A/D) conversions [7—
10]. We also showed that the dynamic ranges of the binary sensor
could be orders magnitude higher than those of conventional sensor.

One important thing missing in the previous work is the noise. In
the previous work, we only considered shot noise. But dark current
noise, thermal noise, and readout noise also effect the performance
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of the image sensor. Since the pixel value in our sensor is binary,
the influence of all these noise can be modeled as additive Bernoulli
noise with a known parameter pe, called noise rate. This can be
estimated by covering the lens, taking a pictures, and computing the
percentage of the “1”’s in the binary image. In this paper, we focus on
the case that threshold is a single photon. We present performance
of the noisy binary sensor in terms of SNR. We show that the binary
sensor is quite robust to noise for high light intensity values and the
performance is only slightly worse due to noise. The binary sensor
under noise still have much higher dynamic ranges comparing to the
conventional sensor. We propose to use MLE to estimate the light
intensity field, and show that when the threshold is equal to a single
photon, the log-likelihood function is concave which ensures us to
find the optimal solution.

In Section 2, we describe the noisy binary sensing model.
In Section 3, we study the performance of the noisy binary sensor
for estimating a constant light intensity. The MLE for estimating
the light intensity field is presented in Section 4. Section 5 gives
numerical results on both synthesized 1-D signal and images.

To simplify the notation in this paper, we focus our discussion
on a one-dimensional (1-D) sensor array. All the results can be easily
extended to the 2-D case.

2. IMAGING MODEL

We consider the problem of estimating the light intensity field using
a binary image sensor as in [1]. Due to the low-pass effect of the
lens, the light intensity field A(x) captured by the image sensor is a
bandlimited signal. We use the same bandlimited light intensity field
model as in [1], i.e.,

N Nl
AMz) = - Z cn o(Nz —n), (1)
n=0

where ((z) is a nonnegative interpolation kernel, N is a given inte-
ger, T is the exposure time, {c, : ¢, > 0} is a set of free variables,
and the constant g simplifies the expression in later analysis.

An image sensor with M binary pixels samples this light inten-
sity field A(z). We define the oversampling factor K as the ratio
between the number of pixels and the degree of freedom of the light
intensity field A(z), i.e., K = A—I\f Let 5., be the light exposure of
the mth pixel for given exposure time and surface area, 3(x) be the
box function defined as,

Bla) {(1]

and define a discrete filter

if0<z<1;
otherwise,

def

gm = (QD(CL'),B(K.’D - m)>7
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Fig. 1. The signal processing block diagram of the imaging model
studied in this chapter. We upsample and filter the expansion coeffi-
cients ¢, to get the light exposure value s,, at the mth pixel. Then,
the binary image sensor converts {s,, } into quantized measurements
{bm }. Due to noise {w., }, we get the contaminated binary measure-
ments {by, }.

Then from [1], we know that the relation between the light exposure
value for the mth pixel s,,, and the free variables {c, } for the light
intensity field \(x) is

@

Sm = E Cn gm—Kn,
n

i.e., {sm } is obtained by first upsampling the free variables {c, } by
a factor of K and then filtering with a discrete filter g,,, as shown

in Fig. 1.
Let s = [s0,51,---,8m—1]" and ¢ = [co,c1,--- ,en—1]T,
then the matrix-vector form for (2) is
s=Ge, (3)

where G is an M x N matrix denoting the combination of upsam-
pling (by K) and filtering (by g ) as depicted in Fig. 1. Each entry
of sis

“

T
sm = €,,Gc,

where e,, is the mth standard Euclidean basis vector.!

Define y,, the number of photons received by the mth pixel.
Then it is the realization of a Poisson random variable Y,,, with in-
tensity parameter s, i.e.,

Sg”m 6*5711
P(Yin = Ym; sm) = ————,

- for y, € ZT U {0}.

As shown in Fig. 1, we quantize y,, to get a binary pixel value.
The quantizer is a binary quantizer with threshold ¢. If the number
of photons received by the mth pixel y., is larger or equal to g, the
binary pixel value b,, will be “1”, otherwise “0”. For a single photon
threshold, g is equal to “1”. The pixel value b,, is a realization of a
random variable B,,. Introducing two functions,

def —s def
)=e

Ppo(s and pi(s) =1-e€", Q)

we can write
]P)(Bm = bm7 sm) = pbm(sm)7 bm S {07 1} .

Since the pixel value by, is binary, we model the noise w, as
the realization of a Bernoulli random variable W,,, with parameter
Pe, called noise rate, thus,

, if wy, =1

P(Wm _ wm,pe) _ DPe, m . 5

1 —pe, otherwise,
1 . . def T def
Here we use zero-based indexing. Thus, eg = [1,0,...,0]", e1 =

[0,1,...,0]T, and so on.
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The final output for the mth pixel is b;,, = by Vwm, where by, €
{0, 1} and V is the disjunction binary operator. It is the realization of
the random variable By, = B, V Wy,. Introducing two functions,

p6(s) ©po(s)(1—pe) and p§(s) E po(s)pe + pa(s),  (6)
then we have
P(Bfn = bfn; s’mvpe) = pgjn (Sm)v bin S {07 1} . (7)

3. PERFORMANCE ANALYSIS

In this section, we study the performance of the noisy binary im-
age sensor for estimating the light intensity field and analyze the
influence of the noise. We show that the noisy binary sensor is still
better than the traditional sensor in terms of dynamic range with a
reasonable noise rate. To simplify our analysis and derive closed-
form solutions, we assume that the light intensity field is constant.
Numerical results in Section 5 show that the conclusions hold for
general linear models.

3.1. Closed-form MLE Solution for ¢ = 1

In what follows, we derive the closed-form MLE solution when the
threshold is ¢ = 1. We assume that the light intensity is a constant
value c.

Let L£§(c) be the likelihood function of observing K noisy bi-
nary sensor measurement b° = [b§, b, -, b5,_]7. Then,

L5(c) EP(BE, = b5,,0 <m < K;e,pe),

K—-1
H ]P(B:n = bin.;cvpe)a

= ®)
m=0
K—1

=[] pie, (c/K), ©)
m=0

where (8) is because each pixel counts the photons independently,
and (9) is derived from (7). Denote by K1 (0 < K; < K) the
number of “1”’s in the noisy binary sequence b®. Then (9) becomes

e e K e K—K
Li(e) = (pi(c/K)) ™ (pbc/K)) " (10)
Given K noisy binary measurements b®, the MLE is to find

the parameter ¢ which can maximize the likelihood function £ (c)
in (10), i.e.,

v (b%) & arg max Li(c)
0<e<s

= argmax (p§(c/K)) ™ (p(c/K))“ ", an
0<c<S

where the upper and lower bound are used to make the solution phys-
ically meaningful, i.e., the light exposure value can not take negative
value, and when the likelihood function £g(c) = (p§(c/K))™ =
(1- pS(c/K))K, i.e., under the case that K1 = K, is monotoni-
cally increasing with respect to ¢, we can not set the light exposure
value to be oo.

Lemma 1 When the threshold is ¢ = 1, the solution to (11) is

K-K :
7K1nl{(1—*P1e)7 lfo<l(1<[(7
pe < min{ £ 1},
an®) =20, ifKi=00r0<K; <K, (12)
%Spe<%7
S, ifKi=K
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Fig. 2. Performance comparisons of three different sensing schemes
(“BIN”, “IDEAL”, and “SAT”) over a wide range of light exposure
values ¢ (shown in logarithmic scale). The dash-dot line (in red)
represents the “IDEAL” scheme with no quantization; The solid line
corresponds to the “SAT” scheme with a saturation point set at ¢ =
9130; The four dashed lines correspond to the “BIN” schemes with
g = 1and K = 2'2 and different noise rates (from far right to left,
pe = 0,0.001, 0.005 and 0.01, respectively).

where K is the number of “1”s, and K is the total number of pixels.

3.2. The Influence of the Noise on the Dynamic Range

We denote our binary sensing scheme as “BIN”. We also compare
our scheme with two other methods “IDEAL” and “SAT”. In the
“IDEAL”, the pixel counts all the photons hitting on the pixel. The
estimated light exposure value is just the number of the photons re-
ceived by the pixel. The “SAT” scheme is similar to “IDEAL”, ex-
cept that it has a saturation point Chy,q,. We use signal-to-noise ra-
tios(SNRs) to measure the performance. The SNR is defined as

62
SNR =10 logw m,

where ¢ is the estimated light exposure value.

Let y be the number of photons impinging on a pixel. Then for
the “IDEAL” scheme, as shown in [1], the MLE is ¢ipeaL(y) = v,
and SNRipea. = 10log,,(c). For the “SAT” method, the sen-

sor measurement is Ysar & min{y, Cmax }, and the estimator is
CsaT (ySAT) = YSAT-

In Fig. 2, we show the SNR performance for “IDEAL”, “SAT”,
and “BIN” with different noise rates. The dash-dot line in the fig-
ure corresponds to the “IDEAL” scheme. The solid line is for the
“SAT” method. The four dashed lines represent the “BIN” scheme
with fixed oversampling factor K = 2'2, and different noise rates
(from far right to left p. = 0, 0.001, 0.005, and 0.01, respectively).
We can see that the larger the noise rate p., the worse the SNR per-
formance of the “BIN” scheme. We can also notice that the noise
has more influence on lower light intensities. For the large light in-
tensities, the SNR is almost the same for the noiseless and noisy
cases. This indicates that our binary sensing method is quite robust
to noise. Also note that the dynamic range of the noisy binary sensor
still larger than the conventional sensor.
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Fig. 3. The log-likelihood functions for constant light fields under
the noisy case. The parameters are set as: threshold ¢ = 1, oversam-
pling factor K = 20, number of ones K; = 4.

4. IMAGE RECONSTRUCTION USING
MAXIMUM-LIKELIHOOD ESTIMATOR

In the previous section, we derived the closed-form solution of the
MLE for the constant light intensity field model when the threshold
is ¢ = 1. We extend the MLE to the general linear field model with
arbitrary interpolation kernels. We show that for general light field
model, the log-likelihood function is concave when ¢ = 1. Thus we
can find the optimal solution using iterative algorithms.

Similar to our derivations in (8) and (9), the likelihood function
given M noisy binary measurements b® can be written as

M-—-1 M-—-1
Ly(e) = [] BB =bhism) = ] pis, (enGe),  (13)
m=0 m=0

where (13) follows from (7) and (4). We also define the log-

likelihood function as

M-1

th(c) Elog Li(c) = Y logpie (en,Ge). (14)

m=0

Given b°, the MLE is the parameter that maximizes L (c), or
lg(c). Specifically,

em(b%) & arg max Ly (e) = arg max £y (c) (15)
celo,S]N cel0,S]N

The constraint ¢ € |0, S]N means that every parameter c,, should
satisfy 0 < ¢, < S, for some preset maximum value S.

Theorem 1 When the threshold is q¢ = 1, for arbitrary noisy binary
sensor measurements b, the log-likelihood function (3 (c) defined
in (14) is concave on the domain ¢ € [0, S]".
Proof 1 When q = 1, b;,, = 0, according to (6) and (5),

log pie (s) =log((1 —pe)e™*) = log(1 —pe) — s,

which is a concave function.
When q =1, b5, =1,

log pie, (s) = log(1 — (1 —pe)e*) = log(e® +pe — 1) — s.
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Fig. 4. Binary sensing and reconstructions of 1-D light fields with
different noise rates. (a) The original light field A\(x), modeled as a
linear combination of shifted spline kernels. (b), (c), and (d) show
the reconstruction results with different noise rates p. = 0, 0.1, and
0.2 respectively. The oversampling factor is 1024.

e’ (pe—1)
Trrpnz S O due

t00 < pe < 1. Thus when q = 1, b;,, = 1, logpg. (s) is also a
concave function. "

Since the sum of concave functions is still concave and the com-
position of a concave function with a linear mapping (s, = e Ge)
is still concave, we conclude that the log-likelihood function (g (c)
defined in (14) is concave.

The second derivative of this function is

According to Theorem 1, we can find the optimal solution using
iterative numerical methods even if there is noise.

For visualization purpose, we show the log-likelihood function
Ly (c) for a constant light intensity in Fig. 3. We can see that when the
threshold is ¢ = 1, the presence of noise affects the log-likelihood
function only slightly. But the log-likelihood function is still concave
as in the noiseless case.

5. NUMERICAL RESULTS

This section shows numerical results on synthesized 1-D signals and
2-D images. The results validate the performance analysis and the
effectiveness of our proposed image reconstruction algorithm.

5.1. 1-D Synthetic Signals

Given expansion coefficients {c,, } shown as blue dots in the Fig. 4(a),
and the interpolation filter ¢ (z) which is the cubic B-spline func-
tion, we generate a 1-D light field A(z), i.e., the blue line. As shown
in Fig. 4(a), A(z) is a linear combination of the shifted kernel.

We first set the oversampling factor X' = 1024. The recon-
structed light intensity fields with the values of noise rate p. are
0,0.1, and 0.2 are shown in Fig. 4(a), Fig. 4(b), and Fig. 4(c) (in
red), respectively. For comparison, the ground truth is given by the
blue solid curve. We can see that when the noise rate increases, the
performance becomes slightly worse. This obeys the performance
analysis of Section 3.2, and shows the robustness of our proposed
binary sensing scheme.

5.2. 2-D Synthetic Images

Consider a 2-D light intensity field as shown in Fig. 5(a). The values
of the light intensity are in the range [500, 2.5 x 10*]. We simulate
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Fig. 5. Binary sensing and reconstructions of 2-D light fields with
different noise levels. (a) The original light field. (b), (c), and
(d) show the reconstruction results with different noise rates p. =
0,0.1,and 0.2, respectively. The spatial oversampling factor is 8 x 8,
the temporal oversampling factor is 128.

the acquisition of this light intensity field using different noisy binary
sensors. For the noise rate, we consider the cases p. = 0, pe = 0.1,
and p. = 0.2. The spatial oversampling factor of the binary sensor
is set to 8 x 8, and the temporal oversampling factor is 128 (i.e.,
128 independent frames). Note that we have proved the equivalence
between spatial and temporal oversampling in [1]. Similarly to our
previous experiment on 1-D signals, we use a cubic B-spline kernel
along each of the spatial dimensions. The reconstruction results for
different noise cases are shown in Fig. 5. The MSE of the recon-
struction results are shown in Table 1. We can see that the MSE of
the noise case p. = 0.1 is better than that of noiseless case. Since
the noise can not change the binary measurements from “1” to “0”,
the influence of noise when the light intensity is large is small. For
a single experiment, there is a chance that the noise improves the
estimation of large light intensity values. From the figures, we can
see that our binary sensing scheme is quite robust to noise. We can
hardly notice the presence of noise, although 10% or 20% of the bi-
nary measurements are contaminated by the noise. And this follows
the analysis in the previous section.

Table 1. The MSE for different noise rates.
MSE pe = 0.1 pe = 0.2
g=1 2.61 x 10°  2.767 x 10°

pe =0
2.716 x 10°

6. CONCLUSIONS

We worked on the noisy binary image sensor. The noise is mod-
eled as additive Bernoulli noise with a known parameter, and it can
only change the binary output from “0” to “1”. We showed that the
noise had limited influence on the performance of the sensor and
would slightly deteriorate the dynamic range. We used the MLE to
estimate the light intensity function. When the threshold is a single
photon, the log-likelihood function is still concave and the optimal
solution can be computed using iterative algorithms. Future work
may focuses on the influence of arbitrary thresholds.
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