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ABSTRACT 

 

Due to the popularity of the prediction concept in time series 

analysis, predictive coding has been an attractive approach, 

particularly in lossless image compression. Utilization of 

prediction in time series not only makes use of residual encoding 

of the prediction error, but also describes and models the behavior 

of the underlying process. Unfortunately, this approach seems to 

have limited most of the scientists in the compression society to 

focus only to causal (or windowed) predictors, which are fine 

tuned to particular signal patterns. This work considers the 

fundamental formulation of finite extent data compression by 

making use of “adaptive multi-channel” prediction that is 

constructed by comparing prediction values of separate predictors 

(called, the multiple predictor cooperation). The deliberately 

generated channels are observed to have sharp error distributions 

with different bias centers. These biases are centered in a second 

pass, to produce plausible experimental predictive compression 

results. 

Index Terms— Predictive coding, predictive error distribution, 

bias 

 

1. INTRODUCTION 

 

Predictive coding is one of the important tools in communication 

and data compression. Even though a deceleration has been 

observed in predictive image coding research since the adoption of 

the JPEG-LS standard, noteworthy developments have emerged 

recently.  

The classical prediction approach is borrowed from time-series 

analysis. Predictive coders use neighborhood relations (correlation) 

between a sample of interest and its causal past, to remove the 

information redundancy. The prediction error, difference between 

the prediction and an actual sample value, is desired to be small. 

The “smallness” of the prediction error is typically measured in 

terms of the variance or the entropy of the error sequence.  

In [1], Motta et al proposed a single-pass Adaptive Linear 

Prediction and Classification algorithm, ALPC. In that algorithm, a 

pixel of interest is predicted by a weighted sum of its causal 

neighbors where the weights are chosen to minimize the energy of 

the prediction error inside a small prediction window. In [2], Li 

and Orchard suggested a least-square (LS)-based adaptive 

algorithm. Recognizing the edge-directed property (EDP) of the 

LS-based adaptation, they propose to perform LS optimization 

mainly around the edge areas (rather than performing for the whole 

image) thus reducing the computational complexity. In [3], Wu 

and Memon proposed a Context-based, Adaptive, Lossless Image 

Codec (CALIC) operating in two modes: binary and continuous. In 

continuous-tone mode, CALIC uses Gradient Adjusted Prediction 

(GAP) where local gradients of the intensity function at the current 

pixel are first estimated and a prediction is made according to these 

gradients. The local estimated gradients are used to determine edge 

structures as horizontal/vertical edge, sharp (or weak) 

horizontal/vertical edge, or smooth area. Another fundamental 

work on predictive image coding is Low Complexity Lossless 

Compression for Images (LOCO-I) [6] used in the JPEG-LS. 

LOCO-I uses Median Edge Detector (MED) as a predictor. In [5], 

a combination of GAP and MED is proposed and called Gradient 

Edge Detection (GED) predictor. We also note the recent study [4] 

by Wu et al, where the proposed minimum description length 

(MDL) –based adaptive predictor is empirically established to be 

the best among all when applied to lossless image coding.  

Regardless of the numerical success of a particular prediction 

method mentioned above, it can be claimed that these methods 

utilize context optimizations or adaptations with respect to 

correlations or nonlinear correspondences. Therefore, the idea of 

prediction is still borrowed from time series analysis, where the 

predictor is sought as a model for the description of the signal.  

Depending on the local context, each predictor (MED, GAP 

and GED) produces a prediction output. These predictors also flag 

the type of the context that they use. In the 2007 paper, the trivial 

case of adjusting the context depended prediction outputs 

according to the prediction error means of each context was 

considered. The motivation behind that means adjustment 

approach was the observation of different prediction error 

distribution structures, particularly their means for each context. 

For different predictors, the prediction output distributions have 

different context dependencies, depending on the predictor used. It 

is, therefore, a reasonable approach to pass the image through each 

of these predictors (MED, GAP and GED) and consider their 

context-dependent outputs for further post-processing. In this 

paper, the comparison of the context depended prediction outputs 

of each predictor is performed to split the output prediction error 

stream into, so-called, channels; hence the cooperation of the 

predictors. ıt is observed that the produced channels have good 

(sharp and narrow with small variance and entropy) distribution 

shapes that may enable good performance by the following entropy 

coders.  

The idea presented in this work is inherited from the basic 

concepts of data compression, where causality, single context, data 

correspondence, etc. are not necessarily important. The ultimate 

aim is to have a list of prediction error samples, which form a sharp 

histogram/distribution (meaning low entropy or energy). For this 

purpose, we propose to form groups of prediction errors, coming 

from multiple prediction channels in an adaptive manner. MED [6] 

is a typical example of a multiple channel predictive coder, where 

the prediction output is conditioned into 3 cases. 
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In [7], Topal and Gerek proposed to handle such channels 

separately before collecting them into a single pool, which yielded 

an encouraging amount of histogram optimization, i.e., sharper 

histogram. Note that the channel histograms are individually sharp 

but since each has a different mean (bias) value, the combination 

of them results a wider distribution for the final prediction output. 

Consequently, when the channel means are compensated and hence 

aligned, the final prediction output would have a sharper histogram 

or smaller entropy as illustrated in figure 1.The idea is illustrated in 

Figure 1, where (a) shows histograms of generated channels with 

different mean values and of the total prediction output, and (b) 

shows mean-compensated individual channel histograms and the 

resulting narrower total prediction output histogram. 

 

 

 

 

 

 

 

 

 

      (a)                    (b) 

Fig. 1. Histograms Of The Error Channels (a) Before And (b) 

After Bias Cancellation 

 

The above observation is an example of how channels could be 

generated by comparing contexts. On the other hand, it is also 

possible to generate channels by comparing different predictors. In 

this work, we employ multiple predictors to obtain a multi-channel 

system. We compare outputs of the predictors and decide which 

predictors to cooperate for the purpose of splitting an error 

sequence into adaptive sub-channels, hence called “adaptive 

predictor cooperation”. The generated channels usually exhibit 

different mean values with small variances, indicating the 

possibility for optimization, by aligning the histograms about a 

specific value. Clearly, the determination of the mean of each 

channel requires one complete pass of the prediction algorithm. 

However, once the means are determined, the mean compensation 

in cooperating channels can be done easily. During the first pass 

the whole prediction sequence is produced and saved so that on the 

second pass there is no need to reproduce the prediction errors, 

that just offsetting the saved prediction error sequence is the work 

of second pass. Therefore the second pass does not add an extra 

complexity. The overall complexity of the proposed method is not 

really more than the single pass of the corresponding prediction 

algorithm.  

In this study, we improve the cooperative prediction idea 

introduced in [7, 8] in several ways: (1) the use of multiple 

predictors, (2) the use of more sophisticated cooperation strategy 

and (3) adaptive channel splitting stage. With the proposed 

approach, better entropy results are obtained in general compared 

to that of each employed prediction algorithms. For example, when 

the cooperated algorithm is MED, an entropy improvement of 

about 1.64% (on the average) is achieved via cooperation with 

other efficient predictors. Similar improvements are observed for 

other cases of cooperations. 

 

2. PREDICTION ERROR OPTIMIZATION 

 

Due to the unavoidable sub-optimality of any predictor, the error 

residue of the prediction still needs to be optimized. This becomes 

even more eminent at edge areas of an image, where mean-shifted 

error distributions are possible. In conditional (multi-channel) 

algorithms, error bias cancellation is an important problem – also 

due to the condition dependent (non)linear predictors. CALIC and 

LOCO-I encoders have predictors (GAP and MED, respectively) 

that suffer from the bias dissolve problem, too. In CALIC, this 

problem is remedied by estimating the error within each context 

and then adding these bias error values to the predicted value to get 

sharper distribution [3]. Similarly in LOCO-I, the bias parameter is 

estimated in the form of a normalization factor to cancel that 

parameter [6]. As mentioned before, these attempts consider the 

prediction phenomenon as a causal analysis tool, without even 

considering “calculation” of the bias instead of trying to “estimate” 

them. On the contrary, the proposed algorithm attempts the bias 

control problem by distributing the total error logically to bins 

(channels) each with sharp distributions and possibly different 

biases adaptively. The rest of the idea is to optimize total error by 

keeping and compensating-for the biases at each channel [8].  As a 

result, it is not necessary to estimate bias anymore. 

 

4. MULTIPLE COOPERATED PREDICTORS 

 

In this section, we review three predictors that we employ in our 

proposed architecture. Note that the proposed approach is actually 

predictor independent. Hence, the introduced predictors are used 

for illustration purposes. 

 

4.1 MED 

 

Median Edge Detector (MED) is one of the well-known prediction 

algorithms used in the JPEG-LS (LOCO-I) [6]. MED uses three 

causal neighboring pixels, performing a primitive test to determine 

the edge structure as vertical edge, horizontal edge, or smooth area, 

and the current pixel value is predicted accordingly.  

 

4.2 GAP 

 

Gradient Adjusted Prediction (GAP) is used in the commonly 

accepted benchmark coder CALIC [3]. GAP employs seven causal 

neighboring pixels to estimate gradients in the horizontal and 

vertical directions. The difference between gradients is then 

compared with empirically chosen thresholds to determine the edge 

structure as horizontal/vertical edge, sharp (or weak) 

horizontal/vertical edge, or smooth area. According to the edge 

structure, one of the predictors is assigned to make a prediction for 

the current pixel. For details of the algorithm, see [3]. 

 

4.3 GED 

 

The Gradient Edge Detection (GED) predictor [5] can be seen as 

the combination of MED and GAP. Figure 2 shows the causal 

template and the GED algorithm. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Causal Template And Ged Algorithm 

 

Specifically, GED uses five causal neighboring pixels to estimate 

gradients in the horizontal and vertical directions. The difference 

between gradients is compared to a threshold value T to determine 
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the edge structure as vertical edge, horizontal edge, or smooth area 

and the current pixel value P is predicted accordingly. In our 

experiments, we empirically choose the threshold value T as 22. 
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Fig. 3. Proposed Algorithm 

 

6. PROPOSED METHOD 

 

We propose an adaptive prediction error distribution sharpening 

strategy for predictive image coders as seen in Figure 3. In the first 

stage of the proposed algorithm, three predictors (GAP, GED, and 

MED) are run simultaneously and a predictor PCOOP that 

cooperates with MED is determined via The Multiple Cooperation 

Algorithm given in Figure 4 (C block in the Figure 3). For each 

pixel, difference between the predicted values produced by MED 

and PCOOP is calculated, called estimated error. Next, using the 

histogram of the estimation error, a number of channels and 

channel margins are determined adaptively in A block in Figure 3. 

In block A, by utilizing the estimated error histogram’s mean; fair 

distribution of prediction error values into each channel is 

provided. The total number of prediction error values for each 

channel becomes almost fixed. Therefore, the effect of each error 

channel histogram to final distribution is compensated and sharper 

error channel histograms can be obtained. Note that the channel 

parameters (number of channels and channel margins) will be 

specific to a picture under study. Using the channel parameters and 

the error between MED and actual value, sub-channels are 

appointed (D block in Figure 3). In block D by comparing the 

difference between predictions of MED and PCOOP with channel 

margins, the current error value is being addressed to decided 

channel. Then, similar to the work in [8], biases in error sub-

channels are determined and compensated. 

In the cooperation idea [8], the cooperating predictors were 

chosen as MED and linear average predictor within the same 

structuring size. However, the linear average predictor is rather a 

primitive predictor choice for the cooperation. Moreover, 

utilization of multiple predictor choices was not implemented in 

that study. In this work, it was observed that the more successful 

the individual cooperating predictors are, the more satisfactory 

(sharp) error sub-channel distributions are obtained. 

It must be noted that the proposed work is not a new prediction 

algorithm. It is an improvement tool to deliberately split the 

prediction error samples to adaptively constructed channels, which 

are expected to contain different biases, enabling the possibility of 

further performance improvement by compensating for the channel 

biases. It was experimentally observed that, by using successful 

predictors in the channel split selection phase (the cooperation), 

better overall optimizations could be achieved. Technically, the 

proposed improvement algorithm stays valid regardless of the 

prediction algorithm. So, even when a more successful predictor is 

encountered in the future, the proposed method can be 

incorporated for its further improvement. The entropy values of 

prediction residues with the above mentioned predictors are given 

in the experimental results section. According to the experimental 

results, the proposed approach is shown to outperform each 

individual predictor utilized herein. 

On the prediction error stream rectification process, it must be 

rated that the context depended separation into different channels 

does not require additional tagging of each channel at the output 

bit stream. The decoder of the proposed prediction scheme is 

completely symmetric. The decoder uses past (previously decoded) 

image samples to give the same context and channel decision as 

the encoder and compensates according to the indicated mean shift. 

The only additional bits are, therefore, due to the “for once” 

representation of the shift amounts of each channel. For example, 

if there are ten channels, the total amount of overhead is 10 

numbers (each being one byte) appended to the header. This case 

can be quantified with the case of “512 x 512 peppers” test image 

as follows. According to the entropy results in Sec. 8, this image is 

compressed to 147,850 bytes. With 10 more bytes, the output 

becomes 147,860 bytes. On the other hand, the closest 

compression is achieved by the GAP predictor, which compresses 

the image to 151,680 bytes. Clearly, the overhead is reasonable 

compared to the representation of the whole image and the 

algorithm does not suffer from context dilution. 

 

8. EXPERIMENTAL RESULTS 

 

Illustrations after the performance of the proposed adaptive 

multiple-cooperation method is demonstrated by error distributions 

and entropy results in comparison with the individual utilization of 

GAP, MED and GED. Some standard 512x512 test images are 

used. The entropy results are given in Table 1. As can be seen from 

the table, the proposed method almost always has lower entropy 

rates than GAP, MED, GED and Method in [8]. For instance, 

concerning the “peppers” test image, the entropy improvements 

with respect to GAP, MED, GED and Method in [8] are 2.53%, 

6.47%, 3.14% and 2.32% respectively.  

In Figure 5 the error images (Boats Test Image) of the GAP, 

GED, MED and our Proposed Method are given, where the 

smoothness of the proposed method can be seen. 

Fig. 4. The Multiple-Cooperation Algorithm 

 

In Figure 6, error distributions of the separated 8 channels 

(prior to bias cancellation) are plotted. Note that number of 

channels “8” and the corresponding channel margins are chosen 

according to our adaptive channel parameter estimator. Separate 

biases (means of the distributions) are eminent. Combining these 

distributions in a central distribution (Figure 7) would clearly 

produce a sharper distribution than combining the channels 

without bias cancellation (mean centralization. The overall 

prediction error distributions of GAP, MED and GED are clearly 

not as sharp as the distribution of the proposed algorithmic 

improvement. 
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Table 1. Self-Entropy Results (BITS PER PIXEL) Of Test Images 

(Size: 512x512) 

 

Fig. 5. Error Image of the “Boats”. (a) MED, (b) GAP,  

(c) GED and (d) Proposed Method 

 

9. CONCLUSION 

 

An adaptive systematic error distribution sharpening strategy is 

proposed for predictive image coders. The proposed method 

compares the prediction error values coming from separate-but-

simultaneously working predictors and provides this information as 

a decision criterion for splitting the error channel of one of these 

predictors. The achieved error sub-channels are observed to 

contain sharp-but-biased distributions. Consequently, by 

cancelling these biases and combining the error channels, the 

overall error distribution entropy is observed to improve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Error Channels Distributions Before Bias Cancellation For 
The “Peppers” Test Image 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 7. Total Error Distributions Of The Proposed Method Before 
And After Bias Cancellation For The “Peppers” Test Image 
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IMAGES 

 

ENTROPY RESULTS OF PREDICTORS 

Native 

Entropy 
GAP MED GED 

Meth

od in 

[8] 

Multiple 

Predictor 

Cooperat

ion 

Lena 7,44 4,40 4,54 4,68 4,53 4,40 

Barbara 7,63 5,39 5,47 5,57 5,45 5,40 

Sailboat  7,31 5,26 5,38 5,43 5,30 5,26 

Peppers 7,59 4,74 4,94 4,77 4,73 4,62 

Pentagon 6,65 5,22 5,32 5,45 5,27 5,22 

Cameraman 6,85 3,73 3,55 4,33 3,57 3,55 

Boats 7,03 4,37 4,40 4,73 4,35 4,30 

Goldhill 7,47 4,84 4,87 5,23 4,85 4,82 

Airplane 6,70 4,13 4,18 4,60 4,15 4,13 

Couple 7,05 4,81 4,78 5,29 4,81 4,79 

Baboon 7,35 6,20 6,24 6,45 6,23 6,21 

Harbour 6,75 5,00 4,94 5,33 4,98 4,93 

Average 7,15 4,84 4,88 5,16 4,85 4,80 
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