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ABSTRACT
This paper proposes an improved source-splitting-based two-
rate M -channel multiple description coding scheme, where
the source is split into M subsets. In each description, one
subset is coded at a high rate, and others are predictively
coded at a low rate. Uniform offsets among low-rate quan-
tizers of different descriptions are achieved by employing un-
equal deadzones and by quantizing the predictions. When
several descriptions are received, the optimal reconstruction
of each subset is achieved by finding the intersection of all
received quantization bins. The closed-form expression of
the expected distortion is obtained. The proposed scheme
is applied to lapped transform-based multiple description im-
age coding and achieves improved performance. The optimal
deadzone selection and its impact are also given in this paper.

Index Terms— Multiple description coding, predictive
coding, deadzone quantization, random quantization

1. INTRODUCTION AND RELATIONSHIP TO
PRIOR WORK

Transmission loss in communication networks is an important
factor that needs to be considered when designing the system.
Multiple description coding (MDC) addresses this by sending
several descriptions of the source such that the reconstruction
quality improves with the number of received descriptions.
The MDC with two descriptions (or channels) have been stud-
ied extensively. In this paper, we focus on MDC with M de-
scriptions, where M > 2, which is more useful in practice.

A popular approach to generate MDC is based on source
splitting, which is indeed the earliest method [1]. In [2], an
M -channel MDC method called RD-MDC is proposed for
JPEG2000-based image coding, where each JPEG2000 code-
block is encoded at two rates. The higher-rate coded code-
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blocks are divided into M subsets and are assigned to M de-
scriptions. Each description also carries the lower-rate cod-
ings of the remaining code-blocks. In [3], the two-rate coding
in [2] is generalized to multiple rates, but its complexity in-
creases rapidly with M .

In [4], a more efficient predictive coding-based M -
channel MDC scheme is proposed using two-rate coding and
staggered quantization (TRPCSQ), where the low-rate coding
is made mutually refinable using staggered uniform quantiz-
ers. To preserve uniform staggering, the prediction is also
quantized. However, the application of staggered quantizers
creates asymmetric quantization bins with respect to zero,
which compromises the coding efficiency of the scheme.

In [5], a prediction compensated MDC (PCMDC) scheme
is developed for M = 2, where the source is partitioned
into two subsets, and each subset is encoded as the base
layer of one description. Each description also encodes the
prediction residual of the other subset. In [6], a three-layer
MDC (TLMDC) scheme is developed, which generalizes the
PCMDC to M > 2 via sequential prediction. When more
than two low-rate reconstructions of a subset are available,
their average is used as the final reconstruction. A third layer
is also added to refine the low-rate-coded subsets when only
one description is lost, which is the dominant error scenario
when the channel loss probability is low. The performance of
TLMDC is shown to be better than TRPCSQ.

In this paper, we propose an M -channel MDC scheme
that improves both the TRPCSQ [4] and TLMDC [6]. As in
TLMDC, this new method uses two rate predictive coding and
sequential prediction. As in TRPCSQ, it uses uniform off-
sets among different low-rate quantizers, which also requires
the quantization of the predictions. However, different from
TRPCSQ, the uniform offsets are achieved by employing un-
equal deadzone sizes in different quantizers, which avoids the
asymmetric quantizer problem in TRPCSQ. In addition, when
both high-rate and low-rate coding of a subset are available,
joint de-quantization is also applied.

Although staggered quantizers and unequal deadzone
quantizers have been used in various MD schemes, their
theoretical and image coding performances have not been
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systematically studied and compared to each other, especially
for M > 2. For example, in [7], staggered quantizers are
used to improve the central decoder of the two-description
RD-MDC, but theoretical analysis is only derived for the
special case when the low-rate quantizer stepsize is an integer
multiple of the high-rate one. In [8], both unequal quanti-
zations and unequal deadzones are suggested for MD video
coding, but no theoretical analysis is given.

In this paper, based on TRPCSQ and the random quan-
tization theory developed in [9], we obtain the closed-form
expression of the expected distortion of the proposed method.
This enables optimization of some system parameters, for ex-
ample, the optimal transform. The proposed scheme is ap-
plied to lapped transform-based MD image coding. Experi-
mental results show that the proposed scheme achieves bet-
ter performance than TRPCSQ and TLMDC. We also study
the problem of finding the optimal deadzones for the low-rate
quantizers, and demonstrate its impact in image coding.

2. SYSTEM DESCRIPTION AND PERFORMANCE
ANALYSIS

In this section, we describe the proposed uniformly offset
quantizer-based M -channel MDC scheme using, and derive
the closed-form expression of its expected distortion.

2.1. System Description

In TRPCSQ, the uniform offsets among different low-rate
coded quantizers are achieved by shifting the bins of a uni-
form quantizer by multiple of q1/(M − 1) in different de-
scriptions. In addition, the prediction x̄i is also quantized by
a uniform quantizer with the same stepsize q1. Therefore dur-
ing the reconstruction, after shifting the quantization partition
according to the reconstructed prediction, the uniform offsets
among different quantizers are always maintained. However,
the drawback of TRPCSQ is that shifting the bins of a uni-
form quantizer leads to asymmetric bins with respect to zero,
which reduce the coding efficiency, especially at low rates.

In this paper, instead of shifting the bins of a quantizer
by different amounts, we generate the initial uniformly offset
quantizers by adopting quantizers of unequal deadzone sizes.
We denote the proposed method multiple description coding
with uniformly offset quantizers (MDUOQ).

In the i-th description of MDUOQ, the i-th subset is still
encoded by a quantizer of stepsize q0. Any other subset j 6= i
is first sequentially predicted from previously reconstructed
subsets in the same description. The prediction is then quan-
tized by a uniform quantizer with stepsize q1, as in TRPCSQ.
After that, the reconstructed prediction is used to obtain the
prediction residual, and the residual is finally quantized by
a deadzone quantizer with deadzone size of 2(δ + l

M−1
)q1,

where 2δq1 is the smallest deadzone size, and l = (j − i −
1)modM . As a result, across all the M descriptions, each

subset is predictively coded by M − 1 low-rate quantizers
with deadzones of 2(δ + l

M−1
)q1, l = 0, . . . ,M − 2, respec-

tively; hence this also creates a uniform offset of q1/(M − 1)
among neighboring quantizers. At the decoder, we can refine
the reconstruction by finding the intersection of all received
high-rate and low-rate quantization bins.

However, different from TRPCSQ, the uniform offsets
among low-rate quantizers are not always preserved in
MDUOQ, due to the use of predictive coding and the dif-
ferent sizes of the deadzone and other reqular bins. That is,
some joint quantization bin boundaries will be changed after
adding the reconstructed prediction. For example, if a quan-
tizer with deadzone 2δ q1 is shifted to the right by prediction
kq1 (k > 0), it can be verified that k quantization bin bound-
aries within [(1−δ)q1, (k−δ)q1] will generally have different
(non-optimal) values from the original (unshifted) deadzone
quantizer, but other bin boundaries still have the same values
as the original quantizer. Similarly, if the prediction is nega-
tive (k < 0), only the k boundaries in [(k+ δ)q1, (−1+ δ)q1]
will be affected.

The problem above can be avoided by not using predic-
tive coding, that is, quantizing the coefficients directly using
different deadzone quantizers, but this would lose the cod-
ing efficiency of predictive coding. Our experimental results
show that it is still beneficial to keep the predictive coding.

2.2. The Expected Distortion of the System

We next derive the closed-form expression of the expected
distortion of the system, which allows us to optimize the sys-
tem parameters, such as the transform and bit allocation, as
in [4–6]. However, finding the closed-form expression of the
expected distortion of MDUOQ is very challenging, due to
the lack of closed-form R-D formula for deadzone quantizers,
as well as the nonuniform offsets of some bins as described
above, which are also caused by the different deadzones. Nev-
ertheless, if we ignore the impacts of these nonuniform off-
sets, the performance of the joint dequantization of the low-
rate quantizers in MDUOQ can be approximately obtained.

The expected distortion can be written as

D =

M
∑

k=0

pkDk, (1)

where pk =
(

M

k

)

pM−k(1−p)k is the probability of receiving
k descriptions, and Dk is the corresponding expected distor-
tion. When k = 0, Dk is simply the variance of the input.

Let R0 and R1 (bits/sample) be the average bit rate of the
high-rate-coded and low-rate-coded subsets, respectively. As-
sume the overall bit rate constraint is R bits/sample/description,
i.e., 1

M
(R0 + (M − 1)R1) = R.

In the proposed MDUOQ scheme, when k descriptions
are available, k out of M subsets will be reconstructed from
both high-rate and low-rate coding, and the rest will be jointly
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reconstructed from low-rate coding. We assume the quantiza-
tion errors of different blocks are uncorrelated, and their con-
tributions to the reconstruction error are additive. Therefore
Dk can be written as

Dk =
1

M
(kD0,k + (M − k)D1,k) , (2)

where D0,k is the average reconstruction error of subsets with
one high-rate and k− 1 low-rate codings. D1,k is the average
reconstruction error of subsets with k low-rate codings.

We first find the expression of D1,k, which is approxi-
mately given by Eq. (19) in [4].

D1,k =
q21
12

S1,k, (3)

where

S1,k =
1

(M − 1)2
(

M−1

k

)

M−k
∑

l=1

(

M − 2− l

k − 2

)

l3. (4)

This joint de-quantization can be viewed as equivalent to
a quantizer with reduced stepsize

q′
1,k = q1

√

S1,k. (5)

We next represent D1,k in term of R1, the average rate of
the low-rate coded subsets. Let the rate and entropy of each
residual subset be R1,i and h1,i, i = 1, . . . ,M−1. Assuming
the rate is high and entropy coding is applied to encode the
quantized coefficients, their relationship with q1 is [10]

R1,i = h1,i − log
2
q1 =

1

2
log

2
(2πeσ2

1,i)− log
2
q1, (6)

where we assume all the data are Gaussian, and σ2

1,i is the
variance of the residual of the i-th subset. Note that although
Laplacian model is more accurate in practice [11], Gaussian
model is necessary here to facilitate the optimization of the
transform, as in [4–6].

R1 is the average of all R1,i’s. That is,

R1 =
1

M − 1

M−1
∑

i=1

R1,i. (7)

We can then represent q1 by

q1 =
√
2πe

(

M−1
∏

i=1

σ1,i

)

1

M−1

2−R1 ,
√
2πe σ̄12

−R1 , (8)

where σ̄1 is the geometric mean of all σ1,i’s.
Therefore the distortion in (3) becomes

D1,k =
2πe

12
S1,k σ̄

2

1
2−2R1 . (9)

Next, we find the expression of D0,k in (2), i.e., the av-
erage reconstruction error of subsets with one high-rate and
k − 1 low-rate codings. When k = 1, the distortion is sim-
ply given by high-rate coding. When k > 1, we first find the
refined quantization bin from the k − 1 low-rate codings. Let
q′
1,k−1

be the final quantization step, as in (5). We next com-
bine the refined low-rate quantization bin and the quantization
of the high-rate coding to find the final quantization bin. This
is equivalent to joint de-quantization from two randomly stag-
gered uniform quantizers with stepsize q0 and q′

1,k−1
respec-

tively. The expected distortion of such a random quantization
is studied in [9] and is given by Eq. (8) in it:

D0,k =
1

12
q2
0

q′
1,k−1

− 3

4
q0

q′
1,k−1

− 1

2
q0

,
1

12
q2
0
S0,k, (10)

where we define S0,1 = 1. This is equivalent to reducing
the stepsize of the high-rate quantizer from q0 to q′

0,k =

q0
√

S0,k.
In terms of R0 and R1, S0,k and D0,k can be written as:

S0,k =

√

S1,k−1 σ̄12
−R1 − 3

4
σ02

−R0

√

S1,k−1 σ̄12−R1 − 1

2
σ02−R0

, (11)

D0,k =
2πe

12
S0,kσ

2

02
−2R0 , (12)

where σ2

0
is the entropy power of the signal at high-rate cod-

ing.
Plugging D0,k and D1,k into (2) and (1), the general ex-

pression of the expected distortion becomes

D =
2πe

12

(

M
∑

k=1

kpk
M

S0,k

)

σ2

0
2−2R0

+
2πe

12

(

M
∑

k=1

(M − k)pk
M

S1,k

)

σ̄2

1
2−2R1 + p0D0,

(13)

where D0 is the variance of the input signal.

3. OPTIMIZATION OF THE DEADZONES

As described in Sec. 2.1, the smallest deadzone size 2δ q1
determines all other deadzone sizes in the proposed scheme.
Therefore the choice of δ is an important factor that affects
the performance of the system. A simple solution is to always
fix δ. Another way is to find the optimal δ∗ for each case.
An important question is how much is the difference between
the two approaches. In this paper, we use a simple method to
search the optimal δ∗. The two approaches will be compared
in the next section.

To find the optimal δ∗ for the given input signal with target
bit rate R∗, loss probability p, and q0, the algorithm loops
through different δ with a step size of 0.05. For the given
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Fig. 1. The side PSNRs vs. central PSNR tradeoff. (a) Boat: M = 3, total rate 1.0 bpp. (b) Peppers: M = 4, total rate 1.0 bpp.
(c) Lena: M = 9, total rate 2.0 bpp.
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Fig. 2. The expected PSNR vs. central PSNR. (a) Boat: M = 3, total rate 1.0 bpp, p = 0.10. (b) Peppers: M = 4, total rate
1.0 bpp, p = 0.05. (c) Lena: M = 9, total rate 2.0 bpp, p = 0.20.

q0 and δ, it adjust q1 until the bit rate meets the target. The
expected distortions corresponding to all δ are calculated, and
the optimal deadzone for the given q0 can be found from them.

4. EXPERIMENTAL RESULTS

We now compare the performances of the proposed MDUOQ
with TRPCSQ [4] and TLMDC [6] in MD image coding. As
in TRPCSQ and TLMDC, the time domain lapped transform-
based image coding in [12] is used. For the proposed method
with the fixed minimal deadzone size, experimental results
with some typical images show that δ = 0.6 gives the best
overall result. This is used in the following tests.

Fig. 1 compares performances of four methods: MDUOQ
with optimal deadzone, MDUOQ with fixed deadzone, TR-
PCSQ and TLMDC. Three images with different numbers of
descriptions are tested. The figures show the tradeoff between
the central PSNR DM and side PSNR Di. For M = 9, not
all Di are displayed to avoid too crowded figure.

It can be seen from the figure that when M = 3 and M =
4, the proposed method with the optimal deadzone has similar
performance to the fixed deadzone method. However, when
M = 9, using the optimal deadzone can improve more than 1
dB when the number of received descriptions is large.

Compared to TRPCSQ and TLMDC, it can be seen from

Fig. 1 that for the same central PSNR, the side PSNR of
the MDUOQ is better when more descriptions are available.
When very few descriptions are received, TLMDC and TR-
PCSQ sometimes can be better than MDUOQ, but since the
probability of these cases is usually lower than that of receiv-
ing more descriptions, the proposed method will have bet-
ter expected performance. This can be verified from Fig. 2,
which shows the expected distortion (in PSNR) under differ-
ent loss probability p for different central PSNR. These fig-
ures can be used to identify the optimal bit allocation for the
given loss probability p. Note that TLMDC is not shown in
Fig. 2 (c), because TLMDC is mainly designed for small p.

5. CONCLUSION

We develop an improved MDC scheme that uses unequal
deadzones to generate uniformly offset quantizers. The the-
oretical performance is obtained via random quantization
theory. Experimental results show that it outperforms ex-
isting staggered quantizer method that shifts the bins of a
uniform quantizer. We also study the optimal deadzone, and
found that the gain of optimal deadzone is significant when
the number of descriptions is large. An open problem is how
to find a fast algorithm to determine the optimal deadzone for
given image, bit rate and channel condition.
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