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ABSTRACT
Frame structure estimation from line segments is an important

yet challenging problem in understanding indoor scenes. In practice,
line segment extraction can be affected by occlusions, illumination
variations, and weak object boundaries. To address this problem,
an approach for frame structure recovery based on line segment re-
finement and voting is proposed. We refined line segments by the
revising, connecting, and adding operations. We then propose an it-
erative voting mechanism for selecting refined line segments, where
a cross ratio constraint is enforced to build crab-like models. Our
algorithm outperforms state-of-the-art approaches, especially when
considering complex indoor scenes.

Index Terms— indoor frame recovery; line segment refinement;
iterative voting; cross ratio

1. INTRODUCTION

Indoor scenes have been a popular research subject over the past
decade. An important aspect of understanding indoor scenes is the
recovery of a room frame (Fig. 1). The recovered frame could have
applications in indoor scenes, i.e., robot navigation, object recogni-
tion, 3D reconstruction, and event detection [1, 2, 3, 4]. However,
indoor frame recovery remains a challenging task because of illumi-
nation variations, weak boundaries, and partial occlusions. In this
work, we address these difficulties by using new line refinement and
voting strategies.

Related Work: From the perspective of feature utilization, re-
cent work can be classified into two main groups: texture-based and
line segment–based.

Texture-based approaches often over-segment the image into
patches first and then label each patch according to two descriptors:
the color histogram and the texture histogram. For example, Liu et
al. [5] over-segmented an image by using the graph cut and then in-
troduced texture to label the frame. However, the texture descriptors
of indoor scenes are sensitive to illumination variations. Moreover,
the texture descriptors of ceilings, floors, and walls are often similar
to one another in indoor scenes, such that the discrimination of these
descriptors is low. Therefore, methods based on texture descriptors
usually cannot work well when applied to indoor images. Silberman
et al. [6] and Ren et al. [7] introduced depth to determine the cate-
gory of each pixel based on an RGB-D image. These methods often
segment the planes of indoor images according to the depth of each
plane. Compared with texture descriptors, the depth descriptor is
insensitive to illumination variations. The depth descriptor is a good
descriptor for indoor images, but in many real-world applications, it
cannot obtain accurate depth information.
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Fig. 1. Overview of our work. (a): Input image of an indoor scene.
(b): Extracted line segments. (c): Refined line segments after revis-
ing, connecting, adding, and selecting. (d): Output image. It shows
the frame recovered from those messy line segments (Fig. 1b), which
obtained by fitting our crab-like model to the refined line segments.

Given that texture-based approaches are sensitive to illumination
and low discrimination, numerous line segment-based approaches
have been proposed [8, 9]. Compared with texture-based algorithm-
s, line segment-based approaches have three advantages: (1) excel-
lent information on the building structure, (2) minimal impact of the
distance between the camera and scene on line segments, and (3)
line segments robust to illumination variations. Lee et al. [10] pro-
posed 12 corner models to fit the frame through line segments. After
them, Hedau et al. [11] generated candidate frames by shooting rays
from vanishing points and then selected the best candidate via rank-
ing support vector machines (SVMs). Further more, Flint et al. [12]
employed a visual simultaneous localization and mapping system to
refine the frame locally. However, these line segment-based algo-
rithms often do not work well when abundant, missing, or incorrect
extraction exists in the detected line segments.

An orientation map generated from detected line segments that
expresses the local belief of region orientations is proposed by Lee
et al. [10]. Subsequently, methods based on the orientation map
have been proposed. Orientation map-based algorithms often use the
orientation map as a supplemental descriptor for texture descriptors
because it can describe the local category of regions. For instance,
Schwing et al. [13] and Pero et al. [4] introduced the orientation
map as well as texture for frame inference. However, approaches
based on the orientation map often do not work well because such
map is derived from detected line segments, which are sensitive to
weak boundaries.

The Method: Following Hedau et al. [11], we propose a new
method for frame structure recovery based on line segment refine-
ment. Our algorithm primarily includes the following three pro-
cedures. First, the line segments are refined by the revising, con-
necting, and adding operations. In the revising step, we correct the
orientations of misclassified line segments. In the connecting step,
line segments corrupted by occlusions and illumination variation-
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Fig. 2. A sketch for the crab-like model. Under the Manhattan as-
sumption, the model consists of eight lines xc, xf , yl, yr , zcl, zcr ,
zfr , and zfc along x, y, z directions respectively.

s are connected to form a complete segment. In the adding step,
we shoot rays from the vanishing points to the endpoints of line
segments to fit the line segments that are lost on weak boundaries.
Line segments extracted from the orthogonal planes of the frame can
hardly intersect with those lying on the frame structure. Therefore,
we propose an iterative voting algorithm to weigh each line segment
and then select those with high scores. In each loop, a cross ratio
constraint derived from the Manhattan assumption [14] restricts the
hypothetical frames. Compared with state-of-the-art approaches, our
algorithm has the following advantages:

1. Given the revising, connecting, and adding procedures in line
detection, the proposed method can obtain more accurate line
segments. Therefore, our method can estimate line segments
from weak boundaries and occluded regions, which may not
be detected using other approaches [10, 11]. As a result, the
frame can be recovered effectively by our method.

2. As a result of the iterative voting mechanism and cross ratio
constraint, we can recover the frame quickly and accurate-
ly. Our method can also recover frames better than [10] and
[11], especially when weak boundaries, illumination varia-
tions, and occlusions exist in the indoor scenes. Moreover,
our method is six times faster than [10] and nearly 100 times
faster than [11].

2. PROBLEM FORMULATION AND NOTATIONS

Our work aims to obtain a frame from a single indoor scene
image. According to the Manhattan assumption,1 the frame is a crab-
like model consisting of eight lines (Fig. 2). The notations for the
crab-like model are described as follows:

1. We denote three vanishing points along the mutually
orthogonalx, y, and z orientations as vpx, vpy , and vpz , respec-
tively. The line passing through vpy and vpz is denoted as the
vertical line lyz , whereas that through vpx and vpz is denoted as the
horizontal line lxz . We also denote the line passing through vpx and
vpy as lxy .

2. The line segments along the x, y, and z directions are parti-
tioned as three sets: X , Y , and Z . We denote the line segments of

1The Manhattan assumption describes the frame of the indoor scene as a
cube. The six planes of the frame lie in three mutually orthogonal orienta-
tions.

the x direction located on the ceiling (floor) as Xc (Xf ). Similarly,
for the line segments along the y direction, we denote the ones on
the left (right) of lyz as Yl (Yr). The line segments of the z direction
on the four corners (from upper left to bottom left in a clockwise
direction) are denoted as Zcl, Zcr , Zfr , and Zfl.

3. LINE SEGMENT REFINEMENT

In our method, line segments are initialized by the detector pro-
posed in [15]. By using the vanishing point estimation algorithm
proposed in [16], we obtain the three vanishing points vpx, vpy , and
vpz and then divide the initial line segments into three sets: X , Y ,
andZ . However, the frame can hardly be recovered directly from the
three line segment sets because these sets often have the following
problems:

Problem 1: According to [16], the line segments close to lxz
are often misclassified.

Problem 2: Given the illumination variations and occlusions,
long line segments are often divided into many parts.

Problem 3: Edges on weak boundaries often cannot be detected
as line segments. That is, some important line segments are often
lost.

To address these difficulties, we propose a new line segment re-
finement method via the following three operations: revising, con-
necting, and adding.

3.1. Revising

To address Problem 1, we propose a revising algorithm:
Step 1: For each line segment l in X and Z , we calculate the

angle θ between l and lxz .
Step 2: If θ < τθ , Step 3 is performed. Otherwise, Step 1 is

repeated. τθ is the threshold, which we set to 20◦.
Step 3: We use nearest neighbor assignment to reclassify the

line segment l. That is, we find the line segment l′ closest to line
segment l and classify l with l′.

3.2. Connecting

To address Problem 2, we propose an approach to connecting
line segments. The main idea of this method is to check whether two
line segments are collinear.

Step 1: Two line segments li and lj are selected from X (Y or
Z).

Step 2: The total length of the two line segments is calculated
as length = len(li) + len(lj), where len(·) is the length function at
the pixel level. The longest distance longDis and shortest distance
shortDis between the two line segments are also calculated.

Step 3: The distance error is computed as,

e = |longDis− shortDis− length|, (1)

If e < τe, we connect the two line segments li and lj . Otherwise,
the entire procedure is repeated. τe is the threshold, which we set to
0.3.

3.3. Adding

To add line segments, we divide X , Y , and Z into eight subsets:
Xc, Xf , Yl, Yr , Zcl, Zcr , Zfr , and Zfl. This process has two
stages: constructing the coordinate by lxz and lyz and then assigning
each line segment to a quadrant according to its midpoint.

1997



Line segments along each direction may be lost (Problem 3).
Under the Manhattan assumption, each line segment should pass
through one vanishing point. To fit the missing line segments Lmis

in the z (x or y) direction, we use the concept of neighbor sets. For
example, the neighbor sets ofZcl are Xc and Yl, and those of Xc are
Zcl, Yl, Zcr , and Yr . We then shoot rays from the vanishing point
vpz (vpx or vpy) to the endpoints near lmis that belong to the neigh-
bor sets of lmis. As a result of the three procedures (i.e., revising,
connecting, and adding), the final line segment set L consists of two
parts:

L = L̄+ L̂, L = {X ,Y,Z}, (2)

where L̄ is the detected line segment after the revision and con-
nection, and L̂ is the added line segment.

4. CRAB-LIKE MODEL CONSTRUCTION

The crab-like model consists of xc, xf , yl, yr , zcl, zcr , zfr , and
zfc. The following subsections describe the two processes that short-
en running time. We first introduce a cross ratio constraint based on
the Manhattan assumption.

4.1. Cross Ratio Constraint

According to the Manhattan assumption, a property of the frame
in Fig. 2 is easily proven. Specifically,

(xc, lxz : xf , lxy) = (zcl, lxz : zfl, lyz) = (zcr, lxz : zfr, lyz),
(3)

The case for the vertical direction is similar. Therefore, the cross
ratio constraint is formulated as,

2c(c,f) − c(cl,fl) − c(cr,fr) < ε, 2c(l,r) − c(fl,fr) − c(cl,cr) < ε,
(4)

where c(c,f) denotes (xc, lxz : xf , lxy). The other denotations are
similar. ε is a small constant ranging from 0.1 to 0.15.

4.2. Iterative Voting Mechanism

Under the Manhattan assumption, each edge of the frame struc-
ture is the intersection of two orthogonal planes, and the line seg-
ments extracted from the orthogonal planes of the frame could not
intersect with those on the frame structure. According to the prop-
erty, we design an iterative voting algorithm to select the top n line
segments in Xc, Xf , Yl, Yr , Zcl, Zcr , Zfr , and Zfl. The weight
for each line segment li can be described as,

wk+1
i = wki + vki , k ∈ N, (5)

where (k + 1) is the duration of the loop, wki is the weight of li
after the k-th loop, and vki is the voting weight of li in the (k +
1)-th loop. To describe the denotations in Equation 5, we define
two functions: ϕ(·), a normalization function, and η(·), a reverse
normalization function.

ψ(xi) =
xi∑
{xi}

, η(xi) =
max({xi})− xi∑
(max({xi})− xi)

, xi ∈ X. (6)

The initial weight w0
i can be evaluated from three aspects:

wlen = ψ(len(li)); wang = η(ang(li)); wdis = η(dis(li)), (7)

Fig. 3. This is a sketch to describe line segment lj (i.e., CD) voting
for line segment li (i.e., AB). (a) li and lj don’t intersect, yet the
extension line of lj intersect with li at pointE. (b) li and lj intersect
at point E.

where ang(·) denotes the angle between li and the line across the
corresponding vanishing point and the middle point of li; dis(·) is
the distance between li and vpz; and li belongs to Xc, Xf , Yl, Yr ,
Zcl, Zcr , Zfr , and Zfl. Thus, w0

i can be formulated as,

w0
i = wlen · ξlen + wang · ξang + wdis · ξdis, (8)

where ξlen +ξang +ξdis = 1. However, the following should be noted.
For li ∈ Z: First, a tangent relation exists between wang and

wdis. Therefore, we set ξdis to 0. Second, the added line segment
li in L̂ does not come from the original image but is shot from the
vanishing point vpz . Therefore, wlen and wdis are meaningless, and
we set ξang to 1.

For li ∈ {X ,Y}: For the added line segment li in L̂, both wlen

and wang are meaningless. Thus, we set ξlen and ξang to 0. The pa-
rameters ξlen and ξang used in the experiments are both fixed as 0.5
for li ∈ Z ∩ L̄. ξlen, ξang, and ξdis are respectively fixed as (1.3/6),
(0.7/6) and (4/6) for li ∈ {X ,Y} ∩ L̄. The voting weight for each
line segments can be described as,

vki =
∑
j

(−1)label · λj · wkj , (9)

where lj is from the neighbor sets of li. For example, if li ∈ Zcl,
lj ∈ {Xc,Yl}, or if li ∈ Xf , lj ∈ {Yl,Yr,Zfl,Zfr}. Assuming
that lj is voting for li (Fig. 3), if li and lj intersect, the label is equal
to 1; otherwise, it is equal to 0. The line segments used for voting
should belong to L̄. Finally, the voting weight of lj to li(i.e., λj) is
formulated as,

λ = η(
min(len(EC), len(ED))

len(CD)
), (10)

Thus, in each loop, the score of the crab-like model can be for-
mulated as the sum of the weight of each line segment in Xc, Xf ,
Yl, Yr , Zcl, Zcr , Zfr , and Zfl. We calculate only the score of
candidate frames that satisfy the cross ratio constraint.

According to the iterative voting mechanism, even when the ini-
tial weight of each line segment is set to 0, the weights of the line
segments on the frame increase along the iteration time, whereas
those of line segments away from the frame decrease rapidly. There-
fore, the top n line segments in each group (Xc, Xf , Yl, Yr , Zcl,
Zcr , Zfr , and Zfl) finally converge. Moreover, given the cross ra-
tio constraint, the candidate frames selected from the top 8 ∗ n line
segments also converge. Thus, we compute the score of each crab-
like model in each iteration step and then rank the models according
to their scores. We break the iteration until the rank of the models
no longer changes.
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5. EXPERIMENTS AND RESULTS

In this section, the proposed method is compared with the state-
of-the-art approaches by Lee et al. [10] and Hedau et al. [11]. The
test images are downloaded from the Internet. The ground truths of
all images are manually labeled. Our method as well as those of Lee
et al. [10] and Hedau et al. [11], utilizes the algorithm proposed in
[15] to initialize line segments.

5.1. Evaluation of Our Algorithm

In the first experiment, we select three indoor images with back-
ground clutter, illumination variations, and weak boundaries to eval-
uate the proposed method.

A large number of incorrect extractions are found among the ini-
tial line segments (Fig. 4b). In the first image, some line segments
are not detected in the ceiling. After revision, connection, addition,
and selection, the refined line segments are significantly better than
the initially detected line segments (Fig. 4c). Some corrupted line
segments on the walls are connected to form a complete line seg-
ment. Moreover, as a result of the adding procedure, we are able
to add some line segments that cannot be detected by the algorithm
proposed in [15] (refer to the line segments on the ceiling and floor).
Thus, the frames recovered by our method are similar to the ground
truth.

Fig. 4. Our results on three images with difficulties from background
clutter, illumination variations and weak boundaries. (a) The input
indoor images. (b) The initial line segments obtained by the algo-
rithm proposed in [15]. (c) The line segments after refining. (d) The
detected frames, where the candidate best fitting the ground truth is
labeled with a heavier line. (e) The ground truth.

5.2. Comparisons with State-of-the-Art Approaches

In this experiment, we compare our method with those of Lee
et al. [10] and Hedau et al. [11] when applied to five challenging
indoor scenes with weak boundaries, occlusions, and illumination
variations. The methods are compared by running their executable
codes with default parameters. The best candidate frames are labeled
with a heavier line. The results of the comparison are illustrated in
Fig. 5. According to this figure, our method outperforms the state-
of-the-art approaches in terms of frame recovery. The advantages of
our method are derived mainly from the following strategies:

1. The refinement procedures, especially addition, facilitate the
detection of line segments on weak boundaries or in regions with

Fig. 5. Comparisons with [10, 11]. (a) The input image. (b) The
initial line segments. (c) The results obtained by [10]. (d) The results
obtained by [11]. (e) Our results. (f) The ground truth.

Algorithm Processing Time (s)
Ours 5.26

Lee et al. [10] 32.61
Hedau et al. [11] 505.79

Table 1. Running time comparison

illumination variations and occlusion. Without this line refinemen-
t strategy, the frames obtained by [10] and [11] are shapeless and
twisted.

2. The voting process and cross ratio constraint facilitate the
selection of superior frames. Compared with [11], which utilizes
sampling and SVM ranking methods, our method can obtain better
frames at a lower computational cost. Comparisons of the computa-
tional cost are presented below.

5.3. Running Speed Evaluation

We also compare the running speed of our algorithm with [11]
and [10]. All algorithms, including ours, are performed with MAT-
LAB on a Windows system with a 3.2 GHz CPU and 2.0 GB RAM.
We used images with 208×343 resolution as the test images. The
results are illustrated in Table 1. Our method has a large advantage
over [10] and [11]. In particular, the proposed method is nearly 100
times faster than [11].

6. CONCLUSIONS

In this paper, we proposed a frame recovery method with line
segment refinement, a voting mechanism, and a cross ratio constrain-
t. The experimental results prove the excellent performance of our
algorithm. As a line segment-based method, our algorithm depends
on the detection accuracies of three vanishing points, which are al-
ways obtained from a number of line segments. In the future, we
will incorporate the optimization of vanishing points into the frame-
work for line segment refinement. With the refined line segments,
we can obtain an accurate orientation map, which we will consider
integrating into our method.

1999



7. REFERENCES

[1] Varsha Hedau, Derek Hoiem, and David A. Forsyth, “Recov-
ering free space of indoor scenes from a single image.,” in
CVPR. IEEE, 2012, pp. 2807–2814.

[2] David F. Fouhey, Vincent Delaitre, Abhinav Gupta, Alexei A.
Efros, Ivan Laptev, and Josef Sivic, “People watching: Human
actions as a cue for single view geometry,” in ECCV (5), 2012,
pp. 732–745.

[3] Min Sun, Sid Ying-Ze Bao, and Silvio Savarese, “Object detec-
tion using geometrical context feedback,” International Jour-
nal of Computer Vision, vol. 100, no. 2, pp. 154–169, 2012.

[4] Luca Del Pero, Joshua Bowdish, Daniel Fried, Bonnie Ker-
mgard, Emily Hartley, and Kobus Barnard, “Bayesian geo-
metric modeling of indoor scenes,” in CVPR, 2012, pp. 2719–
2726.

[5] Xiaoqing Liu, Olga Veksler, and Jagath Samarabandu, “Graph
cut with ordering constraints on labels and its applications,” in
CVPR, 2008.

[6] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus, “Indoor segmentation and support inference from rgbd
images,” in ECCV (5), 2012, pp. 746–760.

[7] Xiaofeng Ren, Liefeng Bo, and Dieter Fox, “Rgb-(d) scene
labeling: Features and algorithms,” in CVPR, 2012, pp. 2759–
2766.

[8] Luca Del Pero, Jinyan Guan, Ernesto Brau, Joseph Schlecht,
and Kobus Barnard, “Sampling bedrooms,” in CVPR, 2011,
pp. 2009–2016.

[9] Huayan Wang, Stephen Gould, and Daphne Koller, “Discrim-
inative learning with latent variables for cluttered indoor scene
understanding,” in ECCV (2), 2010, pp. 435–449.

[10] David C. Lee, Martial Hebert, and Takeo Kanade, “Geometric
reasoning for single image structure recovery,” in CVPR, 2009,
pp. 2136–2143.

[11] Varsha Hedau, Derek Hoiem, and David A. Forsyth, “Recov-
ering the spatial layout of cluttered rooms,” in ICCV, 2009, pp.
1849–1856.

[12] Alexander Flint, Christopher Mei, Ian D. Reid, and David W.
Murray, “Growing semantically meaningful models for visual
slam,” in CVPR, 2010, pp. 467–474.

[13] Alexander G. Schwing, Tamir Hazan, Marc Pollefeys, and
Raquel Urtasun, “Efficient structured prediction for 3d indoor
scene understanding,” in CVPR, 2012, pp. 2815–2822.

[14] James M. Coughlan and Alan L. Yuille, “Manhattan world:
Orientation and outlier detection by bayesian inference,” Neu-
ral Computation, vol. 15, no. 5, pp. 1063–1088, 2003.

[15] Peter Kovesi, “Phase congruency detects corners and edges,”
in DICTA, 2003, pp. 309–318.

[16] Jean-Philippe Tardif, “Non-iterative approach for fast and ac-
curate vanishing point detection,” in ICCV, 2009, pp. 1250–
1257.

2000


