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ABSTRACT

Urban change detection of Very High Resolution (VHR) remote
sensing images is challenging, due to the ill-posed nature of change
detection problem, the inherent nature of VHR image, the complex
morphology of urban scenes, etc. To address the above difficulties,
a robust approach is proposed, which is based on discriminative
local features, robust distance metric and novel multi-scale fusion
strategy. By integrating these components synergistically, the pro-
posed approach is superior to the traditional approaches in capturing
semantic changes and removing the false changes. Comparative
experiments demonstrate the effectiveness and advantages of the
proposed approach.

Index Terms— Change detection, VHR image, local features,
belief propagation, multi-scale fusion.

1. INTRODUCTION

The goal of image change detection is to determine the changed
areas in the co-registered multi-temporal images. With the devel-
opment of VHR satellites such as QuickBird and WorldView, the
details of changed areas can be observed and they are very impor-
tant for practical applications. For this reason, VHR image change
detection receives widespread attention. However, there are some
difficulties due to the nature of VHR image and change detection
technique.

Firstly, the inherent nature of VHR image, such as high intra-
class and low interclass variabilities [1], leads to the reduction of the
statistical separability of different landcover classes. And the statis-
tical separability between the changed and unchanged classes is not
improved simultaneously with the increase of the spatial resolution.
For this reason, traditional change detection approaches [2] [3] [4]
are difficult to be applied to VHR image without considering its com-
plexities.

Secondly, the definition of ‘change’ is ambiguous. Actually,
changes can be defined differently by users in various work settings
related to specific tasks. It is difficult for computers to detect the in-
terested changes for different users automatically. Moreover, as the
increase of spatial resolution, trivial changes are mixed up with the
interested ones and they are difficult to be removed.

Last but not least, changes are related to scales. Specifically,
subtle changes can be detected at a high resolution level, but the
detection result is susceptible to the interference of registration error
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and view-angle variation, etc. Those interference can be reduced at
a low resolution level, while subtle changes will be missed.

The key techniques in change detection of VHR images are
change feature extraction, classification and multi-scale fusion.
Many novel approaches are proposed in the literatures to address
the above problems. For instance, Volpi et al. [5] proposed to con-
catenate spectral, textural and morphological features to structure a
change feature. Huo et al. [6] proposed to classify object-specific
change features by progressive transductive SVM, where initial
training samples are selected automatically based on the magnitude
of change features. Celik [7] proposed to fuse the multi-scale results
from coarse to fine in AND logic function and the final result is
optimized scale by scale.

To overcome the aforementioned difficulties, a novel change de-
tection approach is proposed in this paper for VHR images of ur-
ban scenes by taking the above three important components into ac-
count simultaneously. Compared with the related techniques, perfor-
mance is promising in capturing subtle changes and removing false
changes.

2. PROPOSED CHANGE DETECTION APPROACH

As our focus is on urban images, the complex constitution of urban
area should be considered. In this paper, the complex change fea-
tures of urban area are encoded by discriminative local feature in a
robust distance metric. The trivial change classes and the interested
classes are distinguished by a semi-supervised classification trained
by both unlabeled samples and samples labeled by user. To cope
with the scale dependence, the final result is captured by a novel
multi-scale fusion strategy with context and scale information. The
flowchart of the proposed approach is shown in Fig. 1, which con-
sists of three parts, multi-scale decomposition, change detection and
multi-scale fusion. We will elaborate each component step by step.

2.1. Multi-scale Decomposition

Changes between multi-temporal images are highly dependent on
scales. This paper aims at reducing the dependence of changes on
scales by fusion strategy. Multi-scale decomposition is thus required
to generate hierarchical images of different resolutions for each VHR
image. This can be implemented by direct sub-sampling or pyramid
decomposition. By experiments, we found that similar results are
achieved by different multi-scale decomposition approaches. For
efficiency, we use direct sub-sampling in this paper. For the co-

registered multi-temporal images Ii (i = 1, 2), I
(n)
i is obtained by

sub-sampling I
(n−1)
i in a factor 2 based on the bicubic interpola-

tion, where I
(0)
i = Ii. By this way, we get two image pyramids
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Fig. 1. The flowchart of the proposed approach.

{
I
(0)
i , I

(1)
i , · · · I(N−1)

i

}
(i = 1, 2). The sub-sampling level N is

chosen as follows:

N = floor(log2(M/K)), (1)

where floor(·) is the floor function, M is the minimum of the width
and height of images, K is the user-defined minimized size of the
image after sub-sampling.

2.2. Change Detection At Single Scale

Before multi-scale fusion, changes are required to be detected at
each scale individually. The performance of the final result is closely
related to the detection performance at each scale. So it is necessary
to design an effective change detection approach for each scale. Con-
sidering the difficulties of VHR images, a novel change detection is
designed in this paper, which consists of two steps: change feature
extraction and change feature classification.

2.2.1. Change Feature Extraction

To improve the statistical separability between the changed and un-
changed classes of VHR images, we propose to use discriminative
local features and robust distance metric.

The pure usage of spectral difference is limited to represent the
complex structures on man-made objects. To encode the structure
feature of VHR image, SIFT [8] descriptor is extracted at each pixel
to characterize local image structures and encode the contextual in-
formation. Compared to the raw spectral features, SIFT descriptor
is a higher level feature and more powerful in capturing the salient
structures of man-made objects.

1 2 2 2,pjd f p j j D

1 2, pjf p q d

2 1 1 1,qid f q i i D

2 1, qif q p d1 2p p 1 2p q

1 2, pjf p p d

Fig. 2. Illustration of searching the true corresponding pixel.

Even if the object is encoded effectively by the discriminative lo-
cal features, the difference between multi-temporal images is usually
disturbed by view angle variation and registration error, etc. How-
ever, human can easily avoid these errors. The underlying reason is

that the appearances of the objects under different view angles are
regarded to be very similar by human vision system as long as the
local displacement is within certain ranges. Motivated by this obser-
vation, a robust distance measure is proposed as illustrated by Fig. 2,
which is based on local search and Euclidean distance between SIFT
descriptors. For illustration, p1 and q1 in image I1 are coordinate
corresponding pixel of p2 and q2 in image I2 respectively. D2 and
D1 are sets of neighborhood pixels j2 and j1 of p2 and q1. Function
f (·) outputs the Euclidean distance dpj between SIFT features of
pixel p1 and j2. p1 → q2 denotes that q2 is the true corresponding
pixel of p1.

2.2.2. Change Feature Classification

Once the above robust change features are computed, changes can be
detected by classifying the change features. Noting the ambiguous
definition of ‘change’ and the low statistical separability between
the changed and unchanged classes, training samples selection and
classification strategy need being considered carefully.

For change detection, training samples selection is to select the
pixels in the changed and unchanged regions, based on the change
features and the corresponding labels, hyperplane can be achieved
which can separate the changed and unchanged features optimally
in the sense of structural risk. Without doubt, training samples can
be selected automatically. As mentioned above, the definition of
‘change’ is user-specific, it is difficult for the automatic training sam-
ples selection manner to capture the user’s preference. For this rea-
son, the training samples are selected by the user interaction in this
paper.

Training samples selection is important for the classification ac-
curacy. To reduce the dependence of classification accuracy on train-
ing samples selection, semi-supervised transductive SVM [9] is uti-
lized. The role of transductive SVM is to consider the relation be-
tween the training samples and the test samples being considered.
By this way, the user’s preference is added and the classification ac-
curacy is improved. Compared with the traditional SVM [10], the
other advantage of semi-supervised transductive SVM is to tune the
training samples and the hyperplane simultaneously, then the less
representative samples are removed progressively.

Due to the limited discriminability of change features at one
scale, the labels of the pixels whose classification results wT f are
closed to zero are unreliable, where w and f represents the support
vector and the change feature. In order to preserve the detail classi-
fication information, the change possibility maps {C(0),C(1), · · · ,
C(N−1)} are created. The pixel c

(s)
p at scale C(s) denotes the change

probability of pixel p(s) and is obtained as follows:

c(s)p =
1

1 + exp
(
A(s)wT f

(s)
p +B(s)

) (2)

where f
(s)
p represents the change feature of pixel c

(s)
p .

A(s) and B(s) are learned by minimizing the negative log like-
lihood of the pixels p(s):

min : −
∑
p(s)

tp log
(
c(s)p

)
+ (1− tp) log

(
1− c(s)p

)
(3)

where tp =

{
1 wT f

(s)
p > 0

0 wT f
(s)
p < 0

. The more detailed description of

this step can be found in [11].
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(a) Scale C(s−1) (b) Scale C(s)

Fig. 3. Message propagation across scales.

2.3. Multi-scale Fusion

The goal of this step is to confirm the labels of all the pixels at
the original scale according to the change probability pyramid{
C(0), C(1), · · · , C(N−1)

}
. The label lp(s) of pixel p(s) is se-

lected, which minimizes the energy function E
(
lp(s)

)
as follows:

min : E
(
lp(s)

)
=

∑
p(s)∈I(s)

D
(
lp(s)

)
+

∑
(p(s),n(s))

S
(
lp(s) , ln(s)

)
(4)

E
(
lp(s)

)
is composed of the sum of label cost D (·) and the sum of

the label discontinuity cost S (·) between four-connected pixels. In
our task, function D (·) and S (·) are defined as follows:

D
(
l(s)p

)
=

⎧⎨
⎩
(
1− c

(s)
p

)2

l = 1(
c
(s)
p

)2

l = −1
, (5)

S
(
l(s)p , l(s)n

)
=

{
0 l

(s)
p = l

(s)
n

1 l
(s)
p �= l

(s)
n

. (6)

Eq. (4) can be solved by the loop belief propagation (BP) ap-
proach [12]. The label lp(s) of p(s) is selected to minimize the

following function F (·):

F
(
lp(s)

)
= D

(
lp(s)

)
+

∑
n(s)∈N

(s)
p

mT
n(s)→p(s)

(
lp(s)

)
, (7)

where mT
n(s)→p(s)

(
lp(s)

)
is estimated by minimizing the following

function:

S
(
ln(s) , lp(s)

)
+D

(
lp(s)

)
+

∑
m(s)∈N

(s)
n ,

m(s) �=p(s)

mT−1

m(s)→n(s) (ln(s)).

(8)
mT

n(s)→p(s)

(
lp(s)

)
defined in Eq. (7) is the message transfered from

the pixel n(s) to the pixel p(s) at iteration T . N
(s)
p and N

(s)
n are

pixel sets of four-connect pixels of p(s) and n(s).

From Eq. (8), message mT
n(s)→p(s)

(
lp(s)

)
contains the change

probability information. This change probability information at
scale C(s) can be propagated to scale C(s−1). That is, the ini-
tial values m0

n(s−1)→p(s−1)

(
lp(s−1)

)
shares the same value of

mT
n(s)→p(s)

(
lp(s)

)
. As shown in Fig. 3, the messages from a to b,

b to e, c to d and d to f (blue lines) in scale C(s−1) share the same
value of the message from A to B at scale C(s). The change map is
determined according to Eq. (7) at scale C(0).

Algorithm 1: Multi-scale Fusion Strategy

for s = N − 1 : −1 : 0 do
if s=N-1 then

m0
n(s)→p(s)

(
lp(s)

)
= 0;

else
Initializing m0

n(s)→p(s)

(
lp(s)

)
by

mT
n(s+1)→p(s+1)

(
lp(s+1)

)
;

end
T = 0;
repeat

Updating mT
n(s)→p(s)

(
lp(s)

)
according to Eq. (8);

T = T + 1;

until E
(
lp(s)

)
< σ;

end

3. EXPERIMENTAL RESULTS

To validate the effectiveness and reliability of the proposed ap-
proach, several experiments were carried out. For space limitation,
only two datasets are discussed in this paper, the similar conclusions
can be drawn from the other datasets. The images used in this paper
were acquired over Beijing by QuickBird satellite in 2002 and 2003.
The spatial resolution of the VHR images is about 0.7m/pixel, the
sizes of the datasets are 1100× 800 pixels and 1024× 1024 pixels
respectively.

3.1. Description of Experiments

(a) (b) (c) (d)

Fig. 4. (a) Image in 2002, (b) Image in 2003, (c) Reference change
map, (d) Label image

The multi-temporal images of the first dataset are shown in
Fig. 4(a) and Fig. 4(b). The reference change map is shown in
Fig. 4(c), in which the white and black color represent the changed
and unchanged areas respectively. As illustrated in Fig. 4(c), some
areas were changed from the barely land to buildings. Except the
above changed area, due to the season variation and view angle dif-
ference, the appearances of the same area of vegetation and building
are very different. Since the false changes caused by the above
impacts are not of interest, as shown in Fig. 4(d), they are selected
as the unchanged samples and marked in green. The lands around
the tall buildings at the bottom left should be taken as unchanged
with respect to the spectral features, but they are undergone the
structural changes simultaneously with the tall buildings nearby. For
this reason, they are selected as the changed samples and marked in
red.

Fig. 5(a) is the result achieved by S3VM at the original scale.
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(a) (b) (c)

Fig. 5. (a) S3VM , (b) S3VM+BP, (c) The proposed approach.

Table 1. Performance comparison on the first dataset.

Technique FA(pixel) MA(pixel) Err

S3VM 238428 26458 30.0%

S3VM+BP 129748 41166 19.4%
The proposed approach 22608 12644 5.0%

The pixel whose wT f is greater than zero is viewed as the changed
area. Despite of the discrimination of local features and the robust-
ness of change features, the missed alarm (MA) and the false alarm
(FA) in Fig. 5(a) are very high. As can be illustrated by Fig. 5(b),
the performance is improved significantly with the help of operat-
ing traditional multi-scale BP [12] on the result of S3VM . This
improvement is mainly due to the addition of the context informa-
tion provided by BP. In spite of the advantages of S3VM and BP
in addressing the difficulties of VHR image change detection, there
are still some missed alarms and false alarms. This demonstrates the
insufficiency of one scale to capture the changes of different types.
Fig. 5(c) is the result generated by the proposed approach. By taking
the novel multi-scale fusion strategy, the result is much closer to the
reference change map. As Table. 1 shows, the error rate is improved
from 19.4% to 5.0%, which shows the importance of multi-scale fu-
sion and the effectiveness of the proposed approach.

(a) (b) (c) (d)

Fig. 6. (a) Image in 2002, (b) Image in 2003, (c) Reference change
map, (d) Label image.

As shown in Fig. 6(a) and Fig. 6(b), the second dataset con-
tains more complex changed and unchanged features than the first
one. Due to the seasonal variation, the color of vegetation areas is
changed from yellow to green. Real changes are mixed up with some
false changes (e.g., different roof appearances of the same build-
ings), and such false changes are very difficult to be removed. In
addition, the features of objects are obscured by the dark shadows.
To keep the real changes of interest and remove the disturbed false
changes, in selecting training samples, two vegetation areas with
different colors and the upper left area with different roof appear-
ances are marked as the unchanged samples, and two areas about

the building changes are marked as the changed samples. Fig. 7 are
the results generated by S3VM , S3VM combining with traditional
multi-scale BP and the proposed approach respectively. Although
this dataset is very challenging, the error of the proposed approach
reaches 9.2%, which is 6.8% and 20.8% better than the other two ap-
proaches. By the proposed approach, the complex structural changes
are captured, and most of the false changes caused by view angle
variation are removed correctly.

(a) (b) (c)

Fig. 7. (a) S3VM , (b) S3VM+BP, (c) The proposed approach.

Table 2. Performance comparison on the second dataset.

Technique FA(pixel) MA(pixel) Err

S3VM 219943 97244 30.0%

S3VM+BP 138375 30241 16.0%
The proposed approach 36728 59755 9.2%

The above qualitative and quantitative comparisons demonstrate
the effectiveness and reliability of the proposed approach in address-
ing the difficulties of VHR images. Of course, the effectiveness and
reliability rely on the combination of the discriminative and robust
change feature extraction, effective classification and multi-scale fu-
sion strategy. In other words, the promising performance can not be
achieved without either component mentioned above.

4. CONCLUSION

A novel approach is proposed for VHR image change detection. This
approach integrates the discriminative local features and a robust dis-
tance metric to represent the complex change in urban VHR images.
The effective classifier is utilized to remove the false changes and
to capture the interested ones. Finally, the result is generated by a
novel multi-scale fusion based on belief propagation to reduce the
dependence of changes on the scale. Despite of the effectiveness of
the proposed approach, many aspects need to be considered in the
future work, including object-specific feature extraction, robust dis-
tance measure to large view angle variation and so on.
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