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ABSTRACT

Recent local stereo correspondence algorithms achieve ac-
curate results by performing effective cost aggregation. In
this paper, we solve the cost aggregation problem in the view
of cost-volume filtering. A novel concept named “two-level
local adaptation” is introduced to guide the proposed filter-
ing approach. Also, a novel post-processing method is pro-
posed to handle both occlusions and textureless regions. The
improvement of performance is confirmed by applying it to
the proposed stereo correspondence algorithm. The overall
method generates competitive results, and outperforms meth-
ods that use the similar filtering technique. By implement-
ing the entire algorithm on the GPU, it can achieve about 10
frames/s for typical stereo pairs with a resolution of 640×360
and a disparity range of 20 pixels.

Index Terms— local stereo correspondence, cost filter-
ing, two-level local adaptation, post-processing

1. INTRODUCTION

In local stereo matching algorithms, disparity map is deter-
mined by selecting the value with the smallest matching cost
from disparity candidates. Thus, cost aggregation becomes
the most important step in local stereo algorithms. However,
it is not a trivial task as it appears to be. The straightforward
aggregation scheme will result in poor disparity maps with
fattened edges. To overcome the undesired effect, various al-
gorithms are proposed. Efforts on improving cost aggregation
can be classified into two categories: variable support window
(VSW) based approaches and adaptive support weight (ASW)
based approaches.

Methods in the first category try to find support windows
that fit the region size and/or shape, while preventing it from
crossing object boundaries. Variable window approach pro-
posed by Veksler [1] performs well when only rectangular
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support windows are used. For every pixel in the reference
image, a square support window is determined by minimizing
the local window cost. Zhang et al. [2] propose a fast algo-
rithm in which non-regular support windows are used. One
advantage of variable support window based approaches is
that integral image technique [3] can be utilized to speed up
the aggregation procedure. This makes these cost aggregation
schemes relatively efficient.

Adaptive support weight based local methods, which
are first introduced by Yoon and Kweon [4], adjust support
weights for pixels in a local support window. Variations are
also proposed to improve the accuracy. In [5], the authors
explicitly deploy smoothness constraint within local objects.
Hosni et al. [6] propose to compute the support weights by
local geodesic distances. Despite their outstanding perfor-
mance, one common shortage is their high complexity. Many
fast approximations [7, 8] are proposed, but at the price of
performance degradation.

Recently, cost aggregation is conducted by filtering on the
cost-volume. Edge preserving filters, e.g. bilateral filter [9],
are frequently used. He et al. [10] introduced the guided im-
age filtering, which has better behavior near edges. More im-
portantly, it can be implemented exactly under linear com-
plexity. Local methods that deploy it directly report excellent
results [11, 12, 13].

In this paper, we propose a new cost-volume filtering
method, whose weight kernel is a more general form of the
one declared in [10]. A novel concept named “two-level lo-
cal adaptation” is introduced to guide the proposed filtering
approach. A novel post-processing method is also proposed
to handle occlusions and textureless regions. The proposed
stereo matching algorithm ranks the 9th among about 141
algorithms on the Middlebury stereo evaluation benchmark,
and takes the 1st place in all local methods. And the overall
stereo matching algorithm can achieve 10 frames/s for typical
stereo pairs with a resolution of 640 × 360 and a disparity
range of 20 pixels.

2. TWO LEVEL ADAPTIVE FILTERING

We first define the filter involves the input image C to be fil-
tered, the guide image I , and the filter output C

′
. Then the

output value C
′

i at a pixel i = (x, y) is defined by
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C
′

i =
∑
j

Wi,j(I)Cj , (1)

where C
′

is the filtered cost volume. Wi,j(I) is the normal-
ized weight of pixel pair (i, j), and depends on the guide im-
age I .

By applying the guided image filtering [10], the weight
kernel can be expressed by

Wi,j =
1

|w|2
∑

k:(i,j)∈wk

(1 +
(Ii − µk)(Ij − µk)

σ2
k + ϵ

). (2)

Here, µk and σ2
k are the mean and variance of the kernel win-

dow ωk in I . ϵ is a smooth parameter, which plays an equiva-
lent role as similarity parameter in bilateral filtering. And |w|
is the number of pixels in window w with fixed dimension
r × r.

We remodel the weight kernel by varying the kernel size.
Kernel windows are adjusted adaptively for local patches.
When variable kernel size is applied, the remodeled weight
kernel can be expressed by the following expression:

Wi,j =
1

|wi|
∑
k∈wi

(
1

|wk|
∑
j∈wk

(1 +
(Ii − µk)(Ij − µk)

σ2
k + ϵ

)),

(3)
where |wi| and |wk| are the pixel numbers in kernel window
wi and wk respectively. This is a general form of the original
weight kernel expressed by (2), while (2) is a special case
when all the kernel windows have the same size, i.e. |wi| =
|wk| = |w|.

With the adaptive kernel size introduced in (3), a hierar-
chy of two-level local adaptation is expected: the pixel lev-
el adaptation and the patch level adaptation. The pixel level
adaptation is achieved as in existing ASW based algorithms:
support weights assigned to the surrounding pixels are adap-
tive to the property of the local patch wherein the center pixel
lies. The patch level adaptation ensures that the property of
local patches are adaptive to the content of the guide image.

To figure out why this additional adaptation level is mean-
ingful in guided filtering, it is necessary to explain the char-
acteristics of the above weight function. The numerator (Ii −
µk)(Ij − µk) in (3) is positive if Ii and Ij are located on the
same side of the average value µk, and is negative otherwise.
The value of term 1+

(Ii−µk)(Ij−µk)

σ2
k+ϵ

will change accordingly,
so that pixel pairs on the same side are assigned large support
weights and those on the different sides will be suppressed.
This property ensures that sharp edges can be preserved after
filtering.

The weight kernel heavily relies on two terms: mean (µ)
and variance (σ2), which represent the statistical characteris-
tics of a local patch. To improve the accuracy of the assigned
support weights, it is meaningful to make the mean and vari-
ance represent the property of local patches more properly. As
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Fig. 1. Kernel windows of (2) and (3). Pixels in shaded area
represent outliers. (a) Square kernel window used in (2) and
outliers presented in shaded area; (b) Proposed adaptive ker-
nel window used in (3) and outliers presented in shaded area,
where fewer outliers are included.

will be explained in section 3.1 in detail, the support region
(used in (3)) is now built on the skeleton stretching in four di-
rections with four arms, which are truncated on the border of
two different regions, while the original guided image filter-
ing (expressed by (2)) utilizes square support windows with
fixed size, resulting in much more outliers. To be more ex-
plicit, we can refer to figure 1. The newly introduced patch-
level adaptation makes the support weights assigned to the
surrounding pixels in a more reasonable manner. And adap-
tive rectangular kernel window ensures fast implementation
as that used in [10] still available by applying the integral im-
age technique [3].

3. STEREO CORRESPONDENCE ALGORITHM

Five steps are carried out to generate the final disparity map.
They are: cost computation, local kernel window adjusting,
cost-volume filtering, winner-take-all (WTA) disparity select-
ing and post-processing. Occlusions are detected and handled
explicitly in the novel post-processing step.

Cost volume C is built by computing per-pixel matching
cost at given disparity values. We combine a truncated ver-
sion of Birchfield and Tomasi’s sampling-insensitive measure
(BT) [14] and the truncated absolute difference on the gradi-
ent map. Specially, the matching cost of pixel at i = (x, y),
when being assigned disparity d, can be expressed by

Ci,d = (1− α)min(CBT
i,d , τ1) + αmin(CGD

i,d , τ2). (4)

Here, parameter α balances two sub cost terms, while τ1 and
τ2 are truncation values. CBT represents the cost of BT mea-
sure [14], and CGD is the absolute difference of two gradient
images. Computed cost volume is then filtered according to
the filtering approach described in section 3. And per-pixel
disparity Di is selected by the simple WTA strategy

Di = arg min
d∈R

C
′

i,d, (5)

where C
′

is the filtered cost volume, and R is the range of
candidate disparity values.
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Fig. 2. Simple tree construction and weighted propagation.
A simple tree is constructed based on the center pixel, which
is represented as blue square, branches with different trans-
port capacity are indicated by lines with different weight, and
dashed lines represent branches with the lowest weight.

3.1. Kernel window adjusting

As expressed in (3), the mean (µk) and variance (σ2) values
represent the property of local patch wk. We adjust the size of
kernel window aiming at excluding pixels that do not belong
to the same region. A moderate percent of external pixels
are allowed. Since the edge conservation mainly relies on the
adaptive guided filter, the window adjusting policy is not so
strict as that used in VSW based algorithms.

In the proposed method, a support window is built upon
the skeleton with four arms stretching in four directions. Arm
stretching is performed in horizontal and vertical directions
separately. Given a specific direction, we search the nearest
pixel that has color difference exceeding the threshold τa to
the center pixel. The color difference ∆Ci,j is computed by

∆Ci,j = min
c∈R,G,B

|Ii,c − Ij,c|, Lmin ≤ |i− j| ≤ Lmax,

(6)
where c is one of the R, G, B color channels. Lmin and Lmax

are truncation values that prevent arm length being neither too
short nor too long.

3.2. Post-processing

Despite the excellent performance of many cost-volume fil-
tering approaches, occlusions must be handled in most lo-
cal stereo matching algorithms. In this paper, a novel post-
processing algorithm is proposed to handle occlusions as well
as refine textureless regions.

3.2.1. Weighted cost propagation

For each pixel in the reference image, a simple tree graph is
constructed as shown in figure 2. Each node represents a pix-
el and the root node is the target pixel that is to be processed.
Tree branches that connect nodes are weighted by the similar-
ity function

Tp,q = exp (−∥Ip − Iq∥
σ2

), (7)

where Tp,q defines the transport capacity between two con-
nected nodes p and q. I represents the pixel intensity, and σ
adjusts the color similarity. Then, the reformulated costs are
aggregated through the weighted branches from the peripher-
al nodes to the root.

3.2.2. Post-processing procedure

Occlusions are first detected by left-right consistency check.
Pixels that fail to pass the consistency check are marked as
occluded pixels. Cross-check may fail to detect many mis-
matched pixels, especially in low-texture regions. These pix-
els are further detected by peak-ratio measuring, which is ex-
pressed by

MPKR
p =

|Cp,1 − Cp,2|
Cp,2

, (8)

where MPKR
p is the calculated peak-ratio of pixel p. Cp,1

is the best local minimum cost, and Cp,2 is the second best
local minimum cost. Pixels with peak-ratio below a specified
threshold ηPKR are marked as unstable pixels. Cost volume
CP is then reconstructed by the following formulation:

CP
p,d =

{
0 , p is occluded,

|C
′

p,d − Cbest
p | , otherwise.

(9)

Here, CP
p,d is the reformulated cost value of pixel p at dispar-

ity candidate d. C
′

is the filtered cost volume, and Cbest
p is

the best cost value of pixel p after the WTA operation. Then,
the reconstructed cost-volume is aggregated by the proposed
weighted cost propagation method, and a refined disparity
map can be determined by performing another WTA opera-
tion. The final disparity map is obtained by replacing the dis-
parity values of pixels that are marked occluded and unstable
with the refined disparity values.

It is common that large regions with low-texture will ap-
pear in many stereo scenes. For post-processing methods re-
lying only on local processing, it is hard to recover accurate
disparity for these regions. Streak-line filling will also fail if
mismatches are not correctly detected, especially when only
cross-check is utilized. Figure 3(c) presents the result when
the post-processing method in [11] is used. Large mismatched
area occurs in the textureless region surrounded by the red
rectangular. The proposed method overcomes this problem by
performing weighted propagation over the whole image, and
mismatched pixels in textureless regions are also detected us-
ing peak-ratio measuring. As shown in figure 3(d), disparity
in foreground textureless region can be recovered accurately.

4. EXPERIMENTAL RESULTS

The performance of the proposed stereo matching algorithm
is evaluated on the Middlebury stereo evaluation website [15].
Constant parameter settings are used throughout for all four
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(a) (b)

(c) (d)

Fig. 3. Comparison of two post-processing methods. (a) Ref-
erence image; (b) ground truth; (c) result of post-processing
method proposed in [11]; (d) result of the proposed post-
processing method.
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Fig. 4. Performance comparison of guided image filtering and
the proposed filtering approach.

benchmark stereo pairs: Tsukuba, Venus, Teddy and Cones.
We set parameters {α, τ1, τ2} = {0.11, 0.027, 0.008} for cost
computation, {τa, Lmin, Lmax} = {0.018, 4, 10} for support
window adjusting, ϵ = 5×10−5 for cost-volume filtering and
{σ, ηPKR} = {0.8, 0.3} for post-processing. The evaluation
result is summarized in table 1. Our method ranks 9th out of
all 141 algorithms as of Nov. 27th, 2012, and is the best lo-
cal stereo matching method without iterative refinement. The
average percent of bad pixel is 4.98% according to the evalu-
ation website.

To compare with the performance of the original guided
image filtering, we evaluate the its performance by varying
the overall kernel size r. We assign this value to parameter
Lmax to make such comparison. Average percent of bad pix-
els of all four benchmark images is compared. Comparison
result is reported in figure 4. The performance of guided im-
age filtering downgrades significantly when r > 15, while the

Table 1. Objective evaluation results according to the Mid-
dlebury stereo evaluation platform [15].

Algorithm Rank Avg. Error pixels in non-occluded(%)

Error(%) Tsukuba Venus Teddy Cones

Proposed 9 4.98 1.04 0.17 5.71 2.44
CostFilter[11] 25 5.55 1.51 0.20 6.16 2.71
NLFilter[16] 31 5.48 1.47 0.25 6.01 2.87
GeoSup[6] 34 5.80 1.45 0.14 6.88 2.94

PLinearS[13] 37 5.68 1.10 0.53 6.69 2.60
AdaptWeight[4] 74 7.26 1.38 0.71 7.88 3.97

Table 2. Runtime evaluation for benchmark stereo images.

Data Set
Disparity CPU time GPU time speed up

Range (s) (ms)
Tsukuba 15 2.12 70 30
Venus 19 2.96 109 27
Teddy 59 8.78 312 28.1
Cones 59 8.76 308 28.5

proposed method shows its robustness in this condition.

4.1. Runtime evaluation

Both CPU implementation and GPU implementation are de-
ployed. The runtime is measured on a desktop with Core Duo
3.16GHz CPU and 2GB 800MHz RAM, and no parallelism
technique is utilized. The average time consumed by bench-
mark stereo pairs are: Tsukuba (2.12s), Venus(2.96s), Ted-
dy(8.78s) and Cones(8.76s). The reported runtime is com-
petitive among the state-of-the-art algorithms, which usually
need several minutes.

The whole stereo matching algorithm is implemented on
a NVIDIA Tesla C2050 GPU. The runtime is reported in ta-
ble 2. In comparison with the CPU time, the GPU code is
about 28 times faster in average for benchmark stereo images.
And for typical stereo images with disparity range 20, the av-
erage runtime of the proposed method is about 100ms on the
test GPU. And our GPU code can run faster on new GPUs
with higher compute capability.

5. CONCLUSION

In this paper, a new local stereo matching algorithm is pro-
posed, which is based on two-level adaptive cost-volume fil-
tering. Competitive result is reported, which out-performs
all local approaches based on adaptive support weight. In
addition to the improvement in accuracy, the proposed cost-
volume filtering approach also presents its robustness. We
have also proposed a novel post-processing method. It can
handle both occluded regions and mismatches in low-texture
regions efficiently.
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