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ABSTRACT

The homography between pairs of images is typically com-
puted from the correspondence of key features such as points,
lines, conics and other geometric entities, each contributing
information to fix the required 8 degrees of freedom (DOF).
In the past years there have been attempts to use conics as cor-
respondence features as a minimum of two correspondence
pairs are required. However, the resulting methods either
place restrictions on the problem (such as pure camera ro-
tation, known calibration) or result in iterative non-linear so-
lutions or in over-parameterized linear problems. Throughout
this paper we propose a simple, direct linear transformation
(DLT) like solution to the problem of homography estimation
using local affine frames, without any restrictions on the phys-
ical model. We also provide approximated statistical analysis
of the proposed algorithm and a comparison with the perfor-
mance of the DLT algorithm. In addition, this method can be
easily adapted to similar problems which employ a DLT-like
algorithm.

Index Terms— Homography estimation, Local affine
frames, Perturbation analysis

1. INTRODUCTION

The planar homography is a collinearity preserving mapping
between points on projected planes. The homography maps
a coordinates vector x = (x, y)T to another coordinates vec-
tor x′ = h(x) = (x′, y′)T . With the use of homogeneous
coordinates, this transformation becomes linear and is repre-
sented as a non-singular 3 × 3 matrix, usually denoted by H.
In this manner, a simpler relation is established between the
coordinate vectors as x′ = λHx.

Homographies play an important role in the geometry
of multiple views [1], [2], [3] as their estimation is the ba-
sic building block in solving more complex computer vision
tasks such as camera calibration and distortion correction [4],
3D reconstruction, stereo vision [5], mosaicing [6] and pose
estimation [7], [8]. In real life applications, the homography
is typically estimated from noisy correspondences, making
linear estimation methods ineffective, either due to large re-
projection errors of the results, or due to the large amount

of correspondences required, which are not always available.
Typically, linear estimators are used as the basic hypothesis
in a more robust RANSAC [9] algorithm.

Our approach is a direct derivation similar to that of the
DLT algorithm [1] but instead of using four points to fix the
required 8 DOF of the homography, we redefine the informa-
tion extracted from the local affine frames as derivatives of
the homography at a given point, allowing us to fix 6 DOF for
each correspondence pair. Therefore, as few as two pairs are
required to estimate the homography.

The rest of the paper is organized as follows. Background
and prior works are reviewed in Sec. 2. The proposed method
is described in Sec. 3. Statistical performance analysis of the
proposed algorithm and comparison with the DLT algorithm
is given in Sec. 4. Examples are given in Sec. 5. Conclusions
are drawn in Sec. 6.

2. BACKGROUND AND PRIOR WORK

The most closely related works to the one presented in this pa-
per are those using conics. Conics are second degree curves,
of which, ellipses are most commonly used to complete the
task at hand. In homogeneous coordinates, a general conic
can be expressed as

x
TCx = 0, (1)

where C is a real symmetric 3×3 matrix whose entries are the
conic coefficients. Assuming we have a pair of corresponding
conics, C and C′, these conics satisfy the projective relation

C′ = λH−TCH, (2)

where λ is a scaling constant. A conic correspondence pro-
vides up to 5 constraints on the homography, therefore, two
correspondences are sufficient to determine the required 8
DOF.

In [10] a general conic is described as a circle undergo-
ing a series of pure similarity, affine and projective transfor-
mations Hs,Ha,Hp, respectively. Writing those relations ex-
plicitly, a set of 14 non-linear equations in 14 variables is ob-
tained. This set is further reduced to a univariate polynomial
equation of degree 8 which has at most 8 solutions for Hp.
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This process can be extended to calculate the entire homogra-
phy between two views using two conic correspondences.

In [11] a general method of constructing a linear set of
equations in the entries of H is derived. It is shown that two
conics Ci,Cj and their corresponding counterparts C′

i,C
′

j

can be used along with a normalization scheme to transform
the conic relation into a linear relation of the form

C′−1

i C′

jH = HC−1

i Cj . (3)

Thus, three or more conic correspondences are enough to
uniquely determine the homography. In the minimal case of
two conic correspondences, the authors show that there exists
a four-fold ambiguity of solutions and an additional procedure
is required to determine the exact solution.

Another related work is that of Köser and Koch. In [12]
they address the problem of pose estimation using a method
called “spatial resectioning” from a single differential feature.
Although the required transformation in this problem is a 2D
perspecitivity (which is determined by 6 DOF), the authors in-
troduce the relation between the global behavior of the func-
tion that is representing the homography to its local behav-
ior as a local affine frame, using Taylor series expansion (a
detailed explanation is given in Section 3). This relation is
further exploited in this paper to provide full homography es-
timation.

3. HOMOGRAPHY ESTIMATION USING LOCAL
AFFINE FRAMES

Having established correspondence and affine normalization
parameters between a pair of patches, we now turn to redefine
this information in terms that are suited to homographies.

Consider a pair of corresponding patches {Ωi,Ω
′

i} satis-
fying the affine relation

x
′ = Bix+ ti, (4)

for each x ∈ Ωi,x
′ ∈ Ω′

i, where Bi is a 2 × 2 linear trans-
formation matrix and ti is a translation vector. In the small
area of these patches this affine relation approximates, with a
fair accuracy, the local behavior of a homography. Therefore,
it is possible to refer to the centers of the patches, xi and x

′

i

as a pair of points having additional directional information.
More specifically, by differentiating eq. (4) with respect to x

we obtain this information in terms of the derivatives

dx′

dx

∣

∣

∣

xi

=
[

∂x′

∂x

∣

∣

∣

xi

∂x′
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∣

∣

∣

xi

]

= Bi. (5)

On the other hand, differentiating the Taylor series expansion
of each of the entries in h(x) and evaluating it at a non-
singular point xi (a non-ideal point, in projective geometry
terms) we obtain

dh(x)

dx

∣

∣

∣

xi

=
dx′

dx

∣

∣

∣

xi

, (6)

Thus, a relation between the affine transformation of local
affine features and the derivatives of the homography is es-
tablished by substituting (5) into (6)

dh(x)

dx

∣

∣

∣

xi

= Bi. (7)

This relation allows us to substitute the measured local affine
information as the point value of the homography derivative,
giving us a new type of constraint on the homography.

Next consider the basic building block of the DLT equa-
tions that corresponds to the i-th correspondence pair given in
[1], assuming normalized homogeneous coordinates
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h = 0, (8)

where h is vector composed of the rows of H. In order to in-
corporate the homography derivative information into the ho-
mography estimation equations, we need equations where the
derivatives appear explicitly. However, any attempt to differ-
entiate the homography equations results in a non-linear set of
equations. Instead, we reformulate the DLT equations using
the vector to skew symmetric matrix operator and Kronecker
product

(

[x′]× ⊗ x
T
)

h = 0. (9)

The resulting system of equations is identical to (8) but in this
form, it is easier to perform implicit differentiation as differ-
entiation and the vector to skew symmetric operator commute
and differentiation of the Kronecker product is identical to the
product rule of differentiation. Applying implicit differentia-
tion to (9) with respect to x and y yields

(

[

∂x′

∂x

]

×

⊗ x
T + [x′]

×
⊗

∂xT

∂x

)

h = 0, (10)

(

[

∂x′

∂y

]

×

⊗ x
T + [x′]

×
⊗

∂xT

∂y

)

h = 0. (11)

Stacking both Eq. (10) and Eq. (11), evaluated at a point xi

we obtain the basic equation block of the proposed method,
to which we shall refer to as the Direct Linear Transforma-
tion - Local Affine Frames (DLT-LAF) method. The deriva-
tives of the homogeneous coordinates are ∂xT

∂x
= (1, 0, 0)

and ∂xT

∂y
= (0, 1, 0). It should be emphasized that ∂x′

∂x

∣

∣

∣

xi

and ∂x′

∂y

∣

∣

∣

xi

are measured quantities, obtained from local affine

frames, and not by differentiating another set of measure-
ments. Each set of equations (10), (11) yields 3 equations.
In total, a pair of corresponding patches yields 6 linearly in-
dependent equations in H, two from spatial information and
four of directional information, Therefore, two pairs of corre-
sponding patches suffice to estimate a homography.
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4. APPROXIMATED STATISTICAL ANALYSIS

In order to understand the effects of the noise on each pa-
rameter of the estimated homography, we must formulate the
resulting estimate in terms of the noise free homography and
the noise terms. However, such formulation is mathemati-
cally complicated as it would require extracting an exact an-
alytic expression of the right singular vector that corresponds
to the smallest singular value. Let A denote the DLT (or DLT-
LAF) model matrix. In order to overcome the above difficulty,
we assume that the noise induces small perturbations in the
model matrix, such that the perturbed matrix ÃT Ã may be
written as

ÃT Ã = ATA+

K
∑

k=1

Ekεk. (12)

In this manner, second order eigenvector perturbation expan-
sion can be used to extract the linear portion of the effects
of the noise in terms of the noise free model matrix A, noise
matrices Ek and noise terms εk.

The aim of this expansion is to obtain an approximation
of the form

h̃ = h+ Ξε, (13)

where h̃ is a second order approximation of the estimated ho-
mography, the true homography h is the eigenvector of ATA
that corresponds to the smallest eigenvalue, Ξ is a coefficient
matrix and the error vector ε = (ε1, . . . , εK)T which con-
tains linear and quadratic error terms. In this form we can
easily calculate the first and second order statistics of the er-
ror as

E(h̃) = h+ ΞE(ε), (14)

cov(h̃) = ΞE
(

(ε− E(ε)) (ε− E(ε))T
)

ΞT . (15)

While this general approach has already been investigated in
[13], the assumption that the quadratic error terms in ε are
negligible leads to the false conclusion that the mean of the
approximated estimate is the actual homography. However,
in practice the right singular vectors are extracted from the
perturbed matrix ÃT Ã, a form which ensures the existence of
quadratic noise terms with a non-zero mean.

4.1. DLT and DLT-LAF methods perturbation analysis

We begin the analysis by inspecting the effects of small per-
turbations on the DLT model matrix A. Consider a corre-
spondence pair {xi,x

′

i}, corrupted with additive noises εxi
=

(εi,x, εi,y, 0)
T and ε

x
′

i
= (εi,x′ , εi,y′ , 0)T in xi and x

′

i, re-
spectively. Substituting into (9), we obtain the noise cor-
rupted DLT block

(

[x′

i + ε
x
′

i
]× ⊗ (xT

i + ε
T
xi
)
)

h = 0. (16)

Since Kronecker product is a distributive operator and the
vector to skew symmetric matrix is a linear operator we may

expand the left hand side of (16), which we denote by Ãi, to
yield

[x′

i]×⊗x
T +[x′

i]×⊗ε
T
xi
+[ε

x
′

i
]×⊗x

T +[ε
x
′

i
]×⊗ε

T
xi
. (17)

The first term is the noise free DLT block Ai. We further ex-
pand the remaining terms as linear combinations of the noise
terms (by rearranging the terms in Eq. (16)) to obtain the per-
turbed DLT block Ãi

Ãi = Ai + εi,xEi,x + εi,yEi,y + εi,x′Ei,x′ + εi,y′Ei,y′

+ εi,xεi,x′Ei,xx′ + εi,yεi,x′Ei,yx′

+ εi,xεi,y′Ei,xy′ + εi,yεi,y′Ei,yy′ . (18)

The complete perturbed model matrix Ã is then obtained
by stacking all perturbed DLT blocks. The error blocks are
padded with zero to fit the dimensions of A and their position
with respect to the originating block Ai. In the final step of
this analysis we obtain the required matrix ÃT Ã. For clarity,
we reassign all error terms, error blocks and indices to include
all the higher order terms obtained by this multiplication to
fit the notation given in Eq. (12).

Eq. (12) ensures the existence and uniqueness of a power
series expansion for the eigenvector corresponding to the
smallest eigenvalue of ÃT Ã from which we derive Eq. (13),
[14]. The proof for the case of a single error term eigen-
value and eigenvector expansion can be found in [15] and
is expanded to multiple error terms in [14], yielding Eq.
(13). A similar analysis of the DLT-LAF method is obtained
by perturbing equations (10) and (11) with both spatial and
derivative noise, [14].

To verify the accuracy of the theoretical analysis we
present the results of this expansion vs. the results of a simu-
lated statistical analysis. We restrict our attention to one test
case homography, given by

H =





−0.9527 3.6709 292.9865
2.4726 0.5011 209.3957
−0.0007 0.0007 0.5463



 .

The simulated results were obtained by estimating the ho-
mography using the DLT-LAF method from a minimal set
of two pairs of correspondences. In each trial, zero mean
white Gaussian noise with varying standard deviation σs and
zero mean white Gaussian noise with fixed standard deviation
σd = 0.2 were added to the centers of the patches and to the
derivatives of each correspondence pair. For each σs, 50,000
trials were conducted to determine the statistics of each entry
in H. It can be seen in Fig. 1 that the resulting approximated
statistics are close to the simulated statistics, making it a vi-
able tool for comparison.

4.2. Statistical comparison between the DLT and DLT-
LAF

The analysis above was used in order to provide analytic tools
for comparing the performance of the DLT algorithm and the
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Fig. 1. Second order perturbation analysis mean and standard
deviation (black and green lines, respectively) vs. simulated
statistics mean and standard deviation (red and blue lines, re-
spectively) performed on a minimal solution DLT-LAF.

DLT-LAF algorithm in cases where the solution is obtained
from a minimal set. We compare the estimation error in each
entry of the homography using the derived perturbation anal-
ysis. In order to illustrate the results, we again use the pre-
viously given test case H. The standard deviations of the ho-
mography entries are given in Figure 2, as functions of vary-
ing additive noise levels on both the coordinates of the patch
centers and the homography derivatives. It can be seen from
the first two columns of Figure 2 that the estimation error of
the DLT-LAF is lower than that of the DLT for reasonably
low derivative noise. However, the third column, which repre-
sents translation and homogeneous coordinate normalization
is more susceptible to derivative noise. This result is consis-
tent over many experiments we have conducted and can be
explained by noting that the proposed method estimates all
the entries of the homography but incorporates more “deriva-
tive” information than spatial information. Without additional
weighting of the measurements, we can expect such transla-
tion errors.

5. EXAMPLES

This section describes the experiments conducted to prove
the applicability of the proposed method. The images used
in the experiments were taken from the Graffiti dataset. Im-
age patches were extracted using MSER and correspondences
were established using affine graph matching [16], resulting
in a set of local affine frames. Having established these affine
relations, a RANSAC algorithm is used to find the best pos-
sible homography with probability of 0.99. The experimental
results (seen in Figure 3) show that homography estimation
from local affine frames performs very well, using only the
information provided by matching two local affine frames.

Fig. 2. Minimal solution standard deviation obtained using
second order perturbation analysis. DLT (yellow) vs. DLT-
LAF (green).

(a) (b)

Fig. 3. Homography estimation using local affine frames ap-
plied to the Graffiti dataset. Source images transformed and
overlaid over target images. (a) #1 over #4, (b) #2 over #3.

6. CONCLUSIONS

We have proposed a simple, minimally parameterized linear
method for homography estimation from correspondences of
local affine frames. The proposed method provides an alter-
native to the unavailability of point correspondence homog-
raphy estimation, in cases where as few as two local affine
frames are available. The simplicity of the method makes it
ideal as a basic hypothesis of the robust RANSAC estima-
tor. Unlike other conic based methods, the proposed method
does not place restrictions on the physical model and gives a
unique solution.
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