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ABSTRACT

We examine the problem of image registration when images have a
sparse representation in a dictionary of geometric features. We pro-
pose a novel algorithm for aligning images by pairing their sparse
components. We show numerically that this algorithm works well
in practice and analyze key properties on the dictionary that drive
the registration performance. We compare these properties to exist-
ing characterizations of redundant dictionaries (i.e., coherence, re-
stricted isometry property) and show that the newly introduced prop-
erties finely capture the behaviour of our registration algorithm.

Index Terms— Image alignment, sparse approximation, para-
metric dictionary, dictionary properties.

1. INTRODUCTION

Image registration is the process of aligning two or more images,
taken from various viewpoints, at different times, or by different
sensors. It represents a crucial preprocessing step in many image
processing and computer vision applications, such as object detec-
tion, localization and classification to name a few.

A popular class of methods are feature based approaches [1]. A
comprehensive and widely used feature based method is the Scale
Invariant Feature Transform (SIFT) [2]. The SIFT features provide
a translation, rotation and scale invariant representation of the im-
age. Even though these features have been a great success in many
computer vision applications, they are mostly built on empirical re-
sults. Furthermore, SIFT keypoints are not well suited for estimating
large rotations as shown in [3]. An alternative to building invariant
feature-based representations of the images is to use an invariant
distance measure. In this approach, the transformation invariance is
included in the measure of distance. However, computing the trans-
formation invariant distance is in general a difficult problem. The
authors in [4] tackle the problem by approximating the transforma-
tion invariant distance with the distance between the tangent (linear)
spaces of the two manifolds of transformed images. The main dis-
advantage of this method is that it achieves only local invariance.
Along the same lines, the work in [5] achieves invariance by approx-
imating the transformation invariant distance; this method is how-
ever computationally expensive since it requires the minimization
of a difference of two convex functions. For a complete survey on
image registration, the reader is referred to [6, 7].

In this paper, we introduce a novel algorithm for aligning input
images that have a sparse representation in a well chosen geometric
dictionary of features. We examine the performance of the proposed
algorithm on illustrative examples and show that the algorithm com-
pares favorably with related methods in the literature. Moreover, we
study the performance of this algorithm theoretically. In order to
do so, we introduce two novel properties that characterize the reg-
istration error of our algorithm: the robust linear independence of
the dictionary, which relates the distance between sparse signals to
the distance between their features, and the transformation inconsis-
tency, which measures how different features in the dictionary are
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affected by the same transformation. We note that widely used prop-
erties of the dictionary (i.e., coherence, restricted isometry property
[8]) are not the relevant quantities in our setting, since they are very
close to one independently of how good the dictionary is for the pur-
pose of image alignment. Through its detailed analysis, the proposed
framework provides useful insight on the connections between im-
age registration problems and sparse signal processing.

2. IMAGE REGISTRATION

2.1. Problem formulation

Let (7,0) be a transformation group and its associated composi-
tion rule, and define L? to be the Hilbert space of square integrable
functions from R? to R. For any 17 € T, we denote by U (n) the uni-
tary operator that maps an image f € L? to its transformed version
U(n)f € L?. To avoid heavy notations, we also use f,, to denote
Umnf.

Let D be the parametric dictionary of features constructed as
follows:

D={¢y:v€Ta} CL (1

where ¢ € L? is a generating function and 7; C 7 is a discretiza-
tion of 7. We refer to any element ¢, in D as a feature or atom. We
consider here for simplicity that the generating function ¢ is cho-
sen so that v — ¢, defines a one-to-one mapping'. Besides, the
generating function ¢ is chosen to be non negative and has a finite
effective support. Consequently, each atom in the dictionary corre-
sponds to a potential part of the image. We assume in this paper that
the two patterns p and ¢ we wish to align are exactly K -sparse in the
dictionary D:

K

p= ciby, @
=1
K

q=7 digs,. 3)
=1

Since the dictionary D contains features that represent potential parts
of the image, we can assume that coefficients ¢; and d; are all non
negative as the different features do not cancel each other. Our aim
is to find the transformation in 7 that minimizes the alignment error
between the two patterns p and g. Formally, we consider the problem
(P) defined as follows:

(P): Find 1o = argmin ||U(n)p — ql|, -
neT

We denote by d(p, q) = ||U(n0)p — q||, the transformation invari-
ant distance between p and q. It corresponds to the regular Euclidean
distance when the images are optimally aligned (in the sense of the
L? norm).

Computing the transformation 7o and the transformation invari-
ant distance d(p, ¢) is a hard problem since the objective function

IFor a complete study of the case where we relax this assumption, we
refer the reader to our technical report in [3].
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is typically non convex and exhibits many local minimas. Hence,
solving this optimization problem using gradient or Newton based
algorithms will generally provide only a local minima. Therefore,
we propose below a simple algorithm that aligns images based on
relative transformations between atoms in the respective sparse rep-
resentations.

2.2. Registration algorithm

Our approach for aligning p and q is conceptually simple. We exploit
the fact that p and g are K-sparse in the geometric dictionary D,
and estimate the transformation based on the relative transformation
between the features in both images. More precisely, let 779 =
{di o fyfl : 1 <i,7 < K} define the set of relative transformations
between pairs of features taken respectively in p and q. We estimate
the transformation by solving the following relaxed problem of (P):

(P) : ) = argmin [|U(n)p — qll, -
neTr 4

Note that the only difference between (P) and (P) is that we re-
placed the initial search space 7~ with the more tractable search space
TP We define do(p,q) = ||U(7)p — q||2 to be the approximate
transformation-invariant distance between p and g. Since the cardi-
nality of 777 is at most K2, (P) can be solved efficiently by a full
search over the elements of 7°? when K is relatively small.

2.3. Illustrative experimental results

We compare here our method with several baseline algorithms in the
task of computing transformation-invariant distances. We consider
T to be the similarity group®, and build the dictionary D on the
model of Eq. (1) with an anisotropic Gaussian generating function

defined by:
¢($,y) = %exp (_ (2)2 - y2> )

where £ is chosen to have ||$||2 = 1°. Besides, we have generated 75
by a discretization of the parameters of 7 to guarantee a low sparse
approximation error on typical images. Moreover, to reduce the er-
rors due to the discretization of the dictionary, we perform a gradient
descent starting from 7 in order to refine the estimated transforma-
tion in a final step of the algorithm.

(a) Duck

(d) Sample transformations of the Duck
image

(b) Car (c) Bear

Fig. 1. Test images [9], and transformed versions of the Duck im-
age. Note that the transformations can imply partial occlusions in
the image. All images are resized to be of dimension 75 X 75 pixels.

2The similarity group of the plane ST M (2) contains transformations that
are combinations of translation, rotation and isotropic dilation.

3The chosen mother function does not satisfy the one-to-one mapping
assumption of v > U(vy)¢. We circumvent this by slightly modifying the
definition of 7*?. We define the stabilizer of ¢ to be the set that keeps the
mother function unchanged: Sy = {v : U(v)¢ = ¢}. Then, we define
TP ={6iomo(vj) t:1<4,j<K,m €Sy} 3l
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(a) Euclidean distance (b) Tangent distance
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(d) Distance obtained with our
method vs. the sparsity K of the
approximation

(c) Gradient descent

Fig. 2. Average and standard deviation of intra- and inter-class dis-
tances for different methods. The blue color denotes the distance
between the original Duck image and a transformed version (intra-
class), while the green and red colors refer respectively to the dis-
tance between the original Duck image and a transformed version of
the Car and Bear images (inter-class). Best viewed in color.

We consider the test images collected from the ALOI dataset [9]
shown in Fig. 1 (a)-(c). We generate 100 random transformations
in 7 = SIM(2) and show some of these transformations applied
to the Duck image in Fig. 1 (d). We construct the sparse patterns
of the test images using a modified version of the Matching Pursuit
algorithm [10] where we choose atoms that have highest positive
correlation with the residual signal.

We compare our method with the regular euclidean distance, the
tangent distance [4], and a local gradient descent approach that starts
from the identity transformation and estimates, through a gradient
descent procedure, the transformation that minimizes ||U(n)I1 —
I5||2, where I and I are the original images that we wish to align.
In Fig. 2, we show the average estimated transformation invariant
distances for intra- and inter-class images computed with the differ-
ent methods. Ideally, the distance between images of the same class
(intra-class distance) should be smaller than the distance between
images of different classes (inter-class distance). One can see that
the euclidean distance cannot discriminate between intra-class im-
ages and inter-class images. Similarly, the tangent distance and the
gradient descent approaches improve the performance only slightly
since these methods provide local invariance. In our method, one
can see that the intra-class distance is significantly smaller than the
inter-class distance even for small values of the sparsity K. This
shows that our registration algorithm works well even in the cases
where the original images are not exactly K -sparse in D.

3. THEORETICAL ANALYSIS

In this section, we examine the penalty of relaxing the problem (P)
into (P). In other words, our goal is to find an upper bound on the
registration error E(p,q) = da(p,q) — d(p, q). In order to do so,

we do the following simplifying assumptions:
VZE{:L’K}:WOO’YIE'YZH (4)
Vie{l,...,K},ny" od: € Ta. )
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These hypotheses state that the atoms of U(no)p and U(ng ')q be-
long to the dictionary. Recall that U(no)p is the optimal alignment
of p with ¢ and U(ngl)q is the optimal alignment of ¢ with p. We
can assume that Eq. (4) and Eq. (5) hold when the parameter space
used to design D is discretized finely.

3.1. Performance with exactly transformed pattern

As a warm up, we consider the special case where d(p, ¢) = 0. In
other words, we suppose that there exists a transformation 79 € T
for which ¢ = U(no)p (i.e., the images can be aligned exactly). We
impose in this case the linear independence of any subset of size 2K
in D, which in turn guarantees that any K -sparse signal has a unique
decomposition in D [11]. If this condition is satisfied, the following
proposition guarantees a perfect registration:

Proposition 1. Suppose that any subset of size 2K in D is linearly
independent. If d(p, q) = 0, then do(p, q) = d(p,q) = 0.

The linear independence assumption guarantees that when two
K -sparse signals are equal, they have at least one atom in common.
If this condition is violated, the patterns U (1o)p and ¢ can have sev-
eral decompositions in the dictionary with disjoint supports. In this
case, all the features of the transformed pattern U (no)p and q are
distinct, which generally leads to d. (p, q) # d(p, q).

3.2. Bound on the registration error in the general case

We study now the general case d(p,q) < e+/||c||2 + ||d||2, where
€ accounts for the innovations between the patterns (other than a

transformation in 7). We recall that ¢ and d denote respectively the
coefficients of patterns p and q. In order to account for the innova-
tions in the performance analysis of the registration algorithm, we
introduce two new key properties of the dictionary, namely robust
linear independence and transformation inconsistency.

3.2.1. Robust linear independence

The linear independence assumption introduced in Section 3.1 is no
longer sufficient to bound the registration performance in the case
where d(p, ) # 0 (but infinitesimally close to zero). To see this, we
construct a linearly independent dictionary D and two sparse pat-
terns p and g for which d(p, ¢) can be made arbitrarily close to zero
(i.e., € — 0) yet the registration error is large. As illustrated in Fig.
3, we consider a dictionary D containing 4 square atoms and an ad-
ditional big square atom parametrized by its position x with respect
to ¢~,. Clearly, when x # 0, the dictionary is linearly indepen-
dent. We consider the patterns p = %Z?:l ¢y and ¢ = Pt
All relative transformations between features in p and q are dilations
composed with translations which result in a large registration error
dao(p, q)—d(p, q). Since our algorithm estimates the global transfor-
mation by computing the best transformation between the features of
both patterns, we obtain a large registration error.

This example shows that the linear independence assumption in
Section 3.1 is fragile: it does not allow us to bound the registra-
tion error even when d(p, ¢) is infinitesimally small. One needs
a stronger condition than mere linear independence to guarantee a
small registration error. We thus extend the notion of linear indepen-
dence as follows:

4The optimal transformation 79 in this case is a translation that aligns
exactly p and ¢ (i.e., U(no)p = q). However, 7o does not satisfy the as-
sumptions in Eq. (4), (5). For small &, the transformation that best aligns the
two patterns and satisfies the assumptions is the identity transformation.
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Fig. 3. Example of a linear independent dictionary D for which
our algorithm has a large registration error dq (p, ¢) — d(p, ¢), when
D = 1/2(¢y, + Py + dyy + ¢+4) and ¢ = ¢-;. Note that e (ie.,
the innovation between p and g) in this particular example is equal
to 4/k; by choosing small values of k, € can thus be made arbitrarily
small. Note also that this dictionary is linearly independent, but not
robustly linearly independent for K = 5 (Definition 1).

Definition 1. Let (H, || - ||) be a normed space and K > 1. A
family of vectors (v1, . ..,vx) € H™ is (e, a)-robustly linearly in-
dependent (RLI) if any set a € RY satisfies:

K
E a;V;
=1

= i, j with a;,a; # 0, ‘

< ellall2 (©)

a;v; a;vj H
||a1v1|| llajv;l

In simple words, when € and « are small, any linear combination
of vectors that nearly vanishes in a RLI family contains at least two
vectors which approximately cancel each other. Armed with this
notion, we introduce the following definition:

Definition 2. D is (K, e, «)-RLI if any subset of size K in D is
(e, )-RLL

Since we focus in this analysis on the performance of the reg-
istration algorithm for small enough innovations, we examine the
behaviour of « when € is chosen to be small. We require in this case
a to be close to zero. We say that a dictionary D is K-RLI if « tends
to zero when € approaches zero.

The following dictionary provides a simple example of an
infinite-size RLI dictionary.

Example 1 (Translations of a box function). Ler H = L*(R) and
1 iftelo,1]
0 otherwise

: 7 € R}, where T is the translation

define the box function v(t) = . We define the dic-

tionary Dyox = {T7v = v,
operator by T.

Let K > 1ande € (0,)/ 7
RLI

) Dhox is (K,e,e %(41(—1))—

Using a straightforward extension of the definition of the Re-
stricted Isometry Property (RIP) [8] to the case where vectors are
in L2, it is not hard to see that the RIP constant of Dy is equal to
1. Indeed, two box functions can be made arbitrarily close to each
other. Similarly, the coherence [12] of Dyox is equal to 1. Neverthe-
less, the dictionary Dyox is K-RLI for any K > 1, since o goes to
zero when ¢ tends to zero. One can understand the fact that Dy is
RLI intuitively; if a linear combination of box functions have a small
norm, there exist at least two box functions that nearly cancel each
other.

Even if the dictionary Dyox hardly satisfies the RIP and is highly
coherent, it is still an interesting one in our framework. Indeed, it
satisfies the key property that two sparse signals that are close in the
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L? sense have at least two approximately similar features. When ap-
plied to our registration problem, this guarantees the existence of two
features related approximately by a transformation 1o when d(p, q)
remains small. This property is at the core of our registration algo-
rithm since we infer the global transformation by looking at the local
transformations between the features.

3.2.2. Transformation inconsistency

The second dictionary property that is important to study the perfor-
mance of our algorithm is the transformation inconsistency, which
measures the difference in the effect of the same transformation on
distinct atoms in the dictionary. It is formally defined as follows for
parametric dictionaries given by Eq. (1).

Definition 3. The transformation inconsistency p of a parametric
dictionary D is defined by:

p = sup sup
v,y €Ta neT\{I}

{IIU(W)%/ - %/Hz}
IUMéy = dyll2 |

where I is the identity transformation. It is not hard to see that
the transformation inconsistency p is always larger than or equal to
1. Furthermore, when 7 is commutative group, the transformation
inconsistency is equal to 1. On the other hand, a large value of p
(i.e., p > 1) means that there exist two atoms in the dictionary
that behave very differently when they are subject to the same trans-
formation. In order to show the importance of the transformation
inconsistency in our registration framework, we give the following
illustrative example.

Example 2 (Dictionary built with translation and isotropic dilation,
T = Ta = R? x RY). Let T to be the group of translations and
isotropic dilations. The generating function of the dictionary could
have any form, as long as its support is much smaller than the di-
mension of the image. For example, we can choose a circle-shaped
mother function, as depicted in Fig 4 (a). Then, we consider the sce-
nario where two atoms ¢~ and ¢,/ that are separated by z (where z
is considered to be very large) as illustrated in Fig.4 (b). A transfor-
mation 1) that consists of a small isotropic dilation has a very differ-
ent effect on both atoms. Indeed, the transformation 1 applied to ¢
results in an atom that has no intersection with ¢.,,, while the same
transformation has almost no effect on ¢, i.e., U(n) ¢~ /= ¢~. Thus,
the transformation inconsistency is very high according to Definition
3. In Fig. 4 (c), we illustrate why this may cause a problem in our
registration algorithm: we consider the two sparse patterns p and
q composed of two features each, where the coefficients of all the
atoms are equal. It is not hard to see in this case that the optimal
global transformation between both patterns is the identity. At the
same time, our algorithm can only estimate a global transformation
that is a dilation (combined possibly with a translation) since all
transformations between pairs of atoms in p and q consist in combi-
nations of dilation and translation.

This example provides insight on the importance of the trans-
formation inconsistency parameter for our algorithm. As the global
transformation between two sparse patterns is estimated from one
of the relative transformations between features, it is preferable that
transformations act in a similar way on all the features of the sparse
patterns for more consistent registration. That means that dictionar-
ies with small transformation inconsistency provide better registra-
tion performance.

Fig. 4. Example of a dictionary where the transformation inconsis-
tency p is large. (a): Mother function of the dictionary (b): Atoms
@~, ¢, and transformation 7 that causes p to be large. (c): Exam-
ples of patterns p (atoms represented with solid line) and g (atoms
represented with dashed line) where our algorithm has a large regis-
tration error dq (p, q) — d(p, q).

3.2.3. Bound on the registration error

We now bound the performance of our registration algorithm in the
general case.

Theorem 1. [fd(p, q) < e/||c||2 + ||d||3 with € > 0, then:
da(p,q) — d(p,q) < apmin (|lc]|, [|d]1),

when D is (2K, €, a)-RLI for some o € [0,+/2), and p is the trans-
formation inconsistency of D.

Theorem 1 shows that robust linear independence with a small
«a (for a fixed e that depends on d(p, ¢)) and a small transformation
inconsistency are key properties of the dictionary in order to guaran-
tee the success of our algorithm. Note that these conditions on the
dictionary are essentially tight, since we can construct example im-
ages where the algorithm fails, whenever the conditions are not met
[3].

This bound guarantees the success of our registration algorithm
for all sparse signals in the dictionary, when the RLI and transfor-
mation inconsistency conditions are satisfied. However, it does not
predict the performance of the algorithm on a particular signal or
class of signals.

Finally, this bound should be interpreted more in a qualitative
way than a quantitative way. It provides two rather intuitive con-
ditions for which our algorithm obtains low registration error. We
stress here on the fact that such a bound could not have been estab-
lished with traditional properties of the dictionary. In order to use
this bound quantitatively, one has however to be able to compute
explicitly the newly defined properties on generic dictionaries. We
leave this interesting question for future work.

4. DISCUSSION

We have proposed in this paper a simple registration algorithm based
on the sparse representation of the input images in a well chosen
parametric dictionary. By construction, this dictionary is not well-
behaved in terms of traditional dictionary properties: the coherence
and RIP constants are very close to 1 when the dictionary is densely
discretized. We circumvent this issue by introducing two dictionary
properties; namely the robust linear independence (RLI) and trans-
formation inconsistency and show that our algorithm has low reg-
istration error when these quantities remain small. To the best of
our knowledge, this paper constitutes the first theoretically motivated
work for image registration through sparse representation in redun-
dant dictionaries. It provides understanding of the dictionary prop-
erties that drive the registration performance. A promising future
direction is the use of the newly introduced quantities for dictionary
learning.
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