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ABSTRACT

High-level image representations have drawn increasing at-
tention in visual recognition, e.g., scene classification, since
the invention of the object bank (OB). The object bank rep-
resents an image as a response map of a large number of
pre-trained object detectors and has achieved superior perfor-
mances for visual recognition.

However, the object bank representation can be further
improved by considering the distributions of the object across
categories and the discriminative contributions to the image
representation. In this paper, we propose an optimal object
bank (OOB) by imposing weights on the detectors accord-
ing to their discriminative abilities. Through extensive ex-
periments on two benchmark datasets: UIUC-Sports dataset
and 15-Scene dataset, we prove that the proposed OOB can
significantly improve the original object bank and achieves
state-of-the-art performances.

Index Terms— Optimal object bank, discriminative co-
efficient, scene classification

1. INTRODUCTION

Mid-level image representations, e.g., the bag-of-word (BoW)
model, have long dominated in visual recognition due to its
simplicity and computational efficiency. However, they fail
to capture enough semantic meanings of images and still
pose gap between image representations and human visu-
al perceptions. Recently, high-level image representations
have attracted increasing interest in visual recognition, a-
mong which, the object bank (OB) [1], has been proposed
and demonstrated to be more effective in image representa-
tion for scene classification. The advantages of the object
bank lies in its ability to extract more semantic meanings of
images offering a rich and high-level representation of image.
The success of the object bank hinges on the detection of
meaningful visual concepts. Fortunately, the availability of
large-scale image datasets, e.g., LabelMe [2] and ImageNet
[3] makes it possible to obtain object detectors for a wide
range of visual concepts. In addition, Zipf’s law [4] known
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in the natural language processing implies that only a small
proportion of objects account for the majority of object in-
stances. By selecting a proper object list, the main content of
image can be sufficiently represented by the responses of the
object filters with semantic concepts.

Actually, the object bank represents an image by the re-
sponses of pre-trained object filters. Due to the explicit detec-
tion of objects in images, the object bank provides an effec-
tive avenue to understand scene images. However, the object
detectors have no knowledge of the distributions of objects
in images and their responses are treated equally in the final
image representation, which would suffers from being less
discriminative for classification.

We argue that the object bank can be further improved
by taking into account the distinct roles of object detectors in
image representations. As a motivation, we propose an opti-
mal object bank (OOB) for high-level scene representations,
in which the object detectors are weighted according to their
discriminability in the representations.

2. OBJECT BANK

2.1. Object detectors

In the object bank representation [1], the latent SVM objec-
t detectors [5] for most of the blobby objects ( tables, cars,
humans, etc) and a texture classifier [6] for more texture and
material based objects ( sky, road, sand, etc) are used to build
a bank of objects. According to the frequency of occurrences
of objects in different datasets, 177 of the most frequent ob-
jects are selected. Shown in Fig. 1 are examples of filters
from [1], which, as we can see, reflect the roughly the out-
lines of the objects.

2.2. High-level representations

Given an image G and a filter F' in the object bank, the re-
sponse of the filter at point (x,y) is the sum of the products
of the filter coefficients and the corresponding neighborhood
points in the area spanned by the filter mask, which can be
formulated as:

ZF{wl7y/]~G{x+x/,y+yl} )
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(b) Filters of elephant (left) and tree (right)

Fig. 1. Ilustration of filters.

Moving the center point (z, y) to go through all the pixels
in the image, responses for all the pixels are obtained. Since
each filter can reflect the outline of an object, the sum oper-
ation in Eq. (1) essentially calculates the similarity between
the object in the filter and a patch around a pixel in the im-
age. If normalized, the maximum value can be viewed as the
probability of the object occurring in the image.

An image is finally represented by a feature vector con-
catenating the maximum responses of all the filters. If the
scales and the location information by spatial pyramid are
further considered, the feature vector could be in a high-
dimensional space. In our experiments, we follow the setting
as [1], in which 177 object filters (with front and profile mod-
els), 6 scales and 3-level spatial pyramid (1 44 + 16) are em-
ployed. The final feature vectoris of 177x2x 6 x 21 = 44604
dimensions. If no location information is used, the dimen-
sionality will be 177 x 2 x 6 = 2124.

3. OPTIMAL OBJECT BANK

With each image represented by a high-dimensional vector of
filter responses, the whole training set can be viewed as the
matrix as shown in Fig. 2. Each column is the image fea-
ture vector, while each row (dimension) spans different im-
ages across different scene classes. Note that an object with
different scales and angles will occur in multiple dimensions
of the feature vector.

In the original object bank representation, each vector is
treated as the final feature and is feed to a classifier, e.g.,
SVM, for classification, which unfortunately ignores the in-
formation of the occurrences of objects in images from dif-
ferent scene classes and the whole dataset, resulting to be less
discriminative. We aim to consider the distributions of the ob-
ject detectors across all images in the dataset and weight them
according to their discriminability.

In Fig. 3, we plot the distributions of the object ‘elephant’
and ‘tree’. As can be seen, both of them follow the Gaussian
distributions with different means and variances.
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Fig. 2. Ilustration of feature vectors of samples in the training
set.
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Fig. 3. Distributions of the objects: ‘elephant’ and ‘tree’ in
the training set.

3.1. Unsupervised learning of coefficients

Assuming here that each dimension in the feature vector obey
the Gaussian distribution as shown in Fig.3, we normalize
each dimension to standard Gaussian distribution.

Let Gy = [ra1, Ta2, -+, Tan] be the vector of image a, and
there are A images in training dataset. The mean m,, and
standard deviation s,, for n-th dimension can be obtained by

1 A

mp = Z ; Tan (2)

Sp = ﬁ ZA:(7'an - mn)2 (3)
- a=1

where each dimension can be viewed as an object. Then the fi-
nal feature vector of image a becomes G, as [Fa1,Ta2y s TanN]
with _
Fan =~ @)
S’!L
The learned m,, and s,, from the training set are applied

to the corresponding dimensions of the feature vectors in the
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test set. Without priori knowledge, e.g., the class labels of
images, each dimension (object) is rectified according to the
distribution of this object among the whole dataset in Eq.(4).

3.2. Relation to tf-idf

Looking deeply into the normalization operation, we can find
that it shares similar ideas with the ‘term frequency-inverse
document frequency’, #f-idf, which has been successfully ap-
plied to video retrieval in [7].

N
termiq = tfiqlg — @)
e

(2

where tf;q is the term ¢ frequency (¢f) in document d and
lg ”ﬁ is inverse document frequency (idf), which is in inverse
proportion to the number of occurrences of term ¢ in the w-
hole database. In Eq. (5), the most important thing lies in
the fact that term;4 depends not only on the document (im-
age) itself, but also on the distribution of this term among all
documents (images), where a higher n; will produce a lower
term;q. This is actually in line with the idea in Eq. (4). De-
nominator in Eq. (4) makes the width of the Gaussian density
function of each dimension equal (unit variance), and denom-
inator (the distance to the center of the density function) can
reflect occurrence frequency of the object. Then similar to #-
idf in Eq. (5), if the value in one dimension is closer to the
corresponding distribution center, it means the object occurs
in more images and therefore this dimension will play less
effect.

3.3. Discriminative weighting

In order to further improve the discriminability of the final
image representations, we consider the roles of the filters on
distinguishing images from different classes by taking into
account their discriminabilities between scene classes. In-
spired by the linear discriminative analysis (LDA) which find-
s a linear projection by the fisher criterion: minimizing the
within-class Sy (7, ) and maximizing the between-class scat-
ter Sg(7y,), we use the fisher criterion to weight the filters.
The weight (discriminative coefficient) for the n-th dimen-
sion can be obtained by:

o SB(fn)
Wy, = S (7o) (6)
where
M nc
Sw(tn) = Z Z(f’an — titen)” @
c=1 a
M
SB(fn) = Z Nne X (m('n - mn)Q (8)
c=1
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15-Scene

bedroom inside of city industry  kitchen
mountain living room highway  suburb
coast open country store office
street tall building forest
UIUC-Sports
rowing snow boarding badminton  polo
sailing rock climbing croquet bocce

Table 1. Scene categories in 15-Scene and UTUC-Sports

Men 18 the n-th dimension of mean vector of class ¢ after
the normalization as in Eq. (4) and 17, is the corresponding
n-th dimension of mean vector of all training data after the
normalization. n. is the number of images in class c.

Then if the n-th dimension has a larger between-class s-
catter and a smaller within-class scatter, it will be more dis-
criminative in the representations and more useful for the final
classification, and therefore should be given more weights.
The weighting can be simply done by:

Tan = Wp X /’A'an (9)

After the weighting, we obtain the final optimal object
bank (OOB) representation with each dimension 7, carrying
more discriminative information.

4. EXPERIMENTS

To validate the effectiveness of the proposed optimal objec-
t bank for image representation and classification, we have
conducted extensive experiments on two benchmark scene
datasets, i.e., the 15-Scene and UIUC-Sports datasets shown
in Table 1.

4.1. Experiments setting

We follow the experimental settings in [1]. For the 15-Scene
dataset [8], 100 images are randomly selected as training da-
ta and the rest for testing. For the UIUC-Sports dataset [9],
70 images are randomly drawn for training and 60 for testing.
A linear SVM classifier [10] is employed for the final scene
classification. We have experimented on both the feature vec-
tors with (44604 dimensions) and without location informa-
tion (2124 dimensions).

4.2. Results on 15-Scene

The results on the 15-Scene dataset are shown in Table 2.
We also report the results with only normalized distributions
(ND). The proposed optimal object bank (OOB) outperform-
s the original object bank (OB), especially when no location
information is used. Interestingly, the simple normalizing dis-
tribution (ND in Table 2 and Table 3) is even better than both



with location  without location
information information
OB 82.03% 78.58%
ND 83.17% 83.23%
OOB 82.52% 83.52%

Table 2. Performance comparison on 15-scene dataset.

with location  without location
information information
OB 77.5% 73.60%
ND 79.77% 80.21%
OOB 82.33% 81.63%

Table 3. Performance comparison on UIUC-Sports dataset.

OB and OOB when location information is included in the
features. Our best result is 83.52%, which increases the orig-
inal object bank by 1.5%.

The comparison of our results with the state-of-the-art
methods is shown in Table 4. Our OOB significantly outper-
forms the recent methods proposed in [11, 12], which com-
bined co-occurrence and locality with spatial information re-
spectively.

4.3. Results on UIUC-Sports

Results on UIUC-Sports dataset are reported in Table 3. The
proposed OOB significantly improves the original OB, from
77.5% to 82.33% with location information and from 73.60%
to 81.63% without location information. UIUC-Sports is
regarded as a challenging dataset due to the complexity of
scenes in the dataset. However, the superiority of OOB over
OB is even more significant, which proves the effectiveness
of the proposed OOB.

We have also compared OOB with the state-of-the-art
methods in Table 4. Again OOB has achieved much better
results than those of recently proposed methods in [13, 14].

Note that on both 15-Scene and UIUC-Sports, our OOB
produces remarkable results with and without the location
information. On 15-Scene, OOB without location informa-
tion can even outperform that with local information, which
demonstrates the robustness of OOB.

| | OOB | State-of-the-Art |
| 15-Scene | 83.52% | 82.51% [11] 82.67% [12] |
| UIUC-Sports | 82.33% | 79.37% [13]  65.00% [14] |

Table 4. Performance comparison of the proposed OOB with
state-of-the-art.
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5. CONCLUSION

In this paper, we have proposed an optimal object bank
(OOB) for scene classification. By considering the distri-
butions of the objects across scene classes and their dis-
criminabilities, OOB can provide more effective high-level
representations than the original object bank (OB).

Extensive experiments on two benchmark 15-Scene and
UIUC-Sports datasets have demonstrated that the proposed
OOB can significantly improve the original OB obtaining
state-of-the-art performances and proven the effectiveness of
the proposed OOB for scene classification.
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