
 

ABSTRACT 

 

Traditional two-dimensional empirical mode decomposition 

(2D-EMD) algorithms generate multiple subband signals, each 

having the same size of the original signal.  Thus, huge 

amounts of data to be stored may be generated.  Moreover, the 

computational load is massive as the decomposition levels 

increase. This paper introduces a method to reduce the data 

generated (i.e. reduce storage requirement) by incorporating 

decimation into the 2D-EMD, while maintaining perfect 

reconstruction.  Furthermore, it is well established that 

traditional EMDs can be thought as having the structure of a 

single dyadic filter bank.  The proposed algorithm is 

applicable into any arbitrary tree structures including octave 

filter banks, 2D-EMD packets when applied to a full binary 

tree, etc.  The methodology hereby presented builds on the 

algorithm introduced by the authors in [8]. 

 

Index Terms— Empirical Mode Decomposition, EMD, 2D-

EMD, Filter banks, Decimated, Perfect reconstruction.  

 

1. INTRODUCTION 

 

The original 1D-EMD proposed in [1] is a time-domain 

decomposition that results in the various frequency 

components of the signal separated into what is denominated 

intrinsic mode functions (IMFs).  The decomposition is done 

without the need of traditional filtering (i.e. convolution). 

Instead, each IMF is obtained simply by subtracting the 

average signal of two envelopes (upper and lower envelopes) 

from the original signal.  The two envelopes are obtained by 

performing time-domain interpolation of the maxima and 

minima of the signal to be decomposed. This simple process is 

continued either until a stop condition is fulfilled or until the 

last signal, called the residual, becomes a monotonic function.  

The flexibility displayed by the 1D-EMD in analyzing non-

stationary and non-linear signals, resulted in researchers 

extending it into a two dimensions, such as in [2,3,4].  Various 

applications, such as in image compression and image fusion 

[5,6], etc. have been also reported. However, traditional 1D 

and 2D-EMDs yield IMFs (and residual) of the same size as 

the original signal to be decomposed. Hence, large amounts of 

data are generated, thereby requiring many times forbidding 

storage capacity and computational loads.   Furthermore, it 

was shown in [7] that the EMD behaves, in essence, like a 

dyadic filter bank similar to those in wavelet transforms.  

Other tree structures have not been considered at all for 

EMDs, due to the nature of IMFs and residuals. In an effort to 

eliminate the drawbacks of the EMD (data expansion and 

fixed tree structure), the authors of this paper developed a 1D-

EMD algorithm that allows for decimation, while still 

permitting perfect reconstruction for any arbitrary tree 

structure, and maintaining the desirable characteristics of 

traditional EMD [8].  In this paper, we extend the algorithm in 

[8] to design 2D-EMD filter banks.  The analysis and 

synthesis portions of the proposed filter banks are introduced 

in Sections 2 and 3, respectively. Data reduction analysis is 

performed in Section 4 and experimental results are presented 

in Section 5. Conclusions follow in Section 6. 

 

2. 2D-EMD ANALYSIS FILTER BANKS 

 

As shown in [7], a traditional EMD can be thought as a dyadic 

filter bank. To make the 2D-EMD applicable to any arbitrary 

tree structure, only one IMF and one residual are considered at 

each node’s subimage. In other words, borrowing the ideas 

from [8], only one residual and the first IMF are obtained at 

each decomposition step.  If it is desired to grow the tree, then 

further decompositions of the residual and the first IMF can be 

done through the same process.  Thus, any arbitrary tree can 

be generated.  This, however, does not fix the size problem, as 

straight downsampling here would no longer yield perfect 

reconstruction.  Hence, we call this structure “undecimated 

EMD filter banks,” borrowing terminology from wavelet 

theory.  It is clear that the data set resulting from 

decomposition increases with every level.  To reduce the 

storage space required, a single stage of the analysis filter 

bank including the proposed decimation technique is shown in 

Fig. 1. Although any non-separable 2D-EMD implementation 

can be used, that of [4] was chosen to generate the results in 

this paper. Unlike traditional 2D transforms, which process 

columns first and rows next, using separable 1D-transforms, 

the algorithm in [4] does both dimensions simultaneously 

using any 2D inpainting interpolation algorithm.  In Fig. 1, ���� implies a row-wise delay operation and ���� implies the 

same operation for columns. R and I denote the residual and 

the first IMF obtained by the 2D-EMD, respectively. The 

encircled ↓2×2 symbol implies decimation by two is applied 

both to rows and columns. Hence, the paths having �������� 

followed by ↓2x2 implies that only the odd indexed elements, 

both in the row and column directions, are allowed through.  

The outputs of these operations are denoted Roo and Ioo. 

Similarly, Ree/Iee, Reo/Ieo, and Roe/Ioe imply (even, even) , (even, 

odd), and (odd, even) indexed elements only, respectively.   
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Fig. 1. One stage of analysis filter banks in decimated 2D-

EMD filter banks proposed in this paper. 

 

Mathematically, assuming Xi,j is the M×N signal to be 

decomposed at node (i, j), we express these signals as  

 ��,	
�, � = �
�, � + �
�, �                      (1) 

                   where ��,	 , �, ���	� ∈ ℜ�×�and  

                               m=0,1,…,M-1 and n=0,1,…, N-1, and 
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   �11
�, � = �
2� + 1,2� + 1, where	k = 0,1, … , 7�' 8 − 1				 
                      and	r = 0,1,… , 5./26 − 1   (5) 

 

The first IMF signals, denoted by Ioo, Iee, Ieo, and Ioe are 

obtained by using a similar set of equations. Intermediate 

signals denoted by 9��
�, �, 9�1
�, �, 91�
�, �, and 911
�, �, 
can be obtained by the summations of downsampled versions 

of R and I as expressed by     
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where 9��
�, � is the (even, even) indexed subimage of ��,	
�, � and so on. Subimages denoted by 9�1
�, �, 91�
�, �, and 911
�, � can be found in Fig. 1 at the output of 

the summation operator fed with ��1	and ��1, �1�	and �1� ,  �11	and �11, respectively.  Five signals are generated from the 

transform from Fig. 1: Ree and Iee (which become a new node 

in the tree), and three error signals, ∆�?�,	�1 , ∆�?�,	1� , and ∆�?�,	11 . 

For further decomposition, we define the new nodes as ��?�	,'	
�, � = ���
�, �] and  ��?�	,'	?�
�, � = ���
�, �],  for 

i=0, 1, 2, ….., L and j=0, 1, 2, …., 2@ − 1, where L is the 

number of decomposition levels.  The error images are 

expressed by  

                                                   

          A∆�?�,	�1 
�, � = 9�1
�, � − 9�1B 
�, �∆�?�,	1� 
�, � = 91�
�, � − 91�B 
�, �∆�?�,	11 
�, � = 911
�, � − 9C1B 
�, �=                   (7) 

 

The estimates in equation (7) are obtained by 2D 

interpolations and proper downsampling, as shown in Fig. 1.  

Thus, the residual and the first even-indexed IMF are 

downsampled and three error signals are formed through 

merging.  All error signals are stored, as they will be needed 

for perfect reconstruction.   All outputs will have dimensions 

that are half the size of the original signal, i.e. each output is 

an M/2×N/2 image. Note that when cascading the stage in Fig. 

1 into multiple stages, ��?�	,'	
� and ��?�	,'	?�
� are nodes 

that can be further decomposed into any desired tree structure.  

Hence, the structure of Fig. 1 forms one stage of the analysis 

part of what we denominate “decimated 2D-EMD filter 

banks.”  Further, note that intermediate signals Reo/Ieo, Roe/Roe, 

Roo/Ioo, Seo, Soe, and Soo are all internal signals, and need not to 

be stored. 

 

In order to make decimated filter banks, the stage in Fig. 1 can 

be cascaded through any arbitrary tree structure.  For example, 

the tree shown in Fig. 2, where the tree structure can be 

expressed by the end nodes, i.e. (3,0), (3,1), (2,1), and (1,1), 

where they are ordered from low to high frequency.  This is 

similar to wavelets used to make an octave filter bank. In Fig. 

2, the output denoted by ∆�?�,	  corresponds to all error images 

generated by the system in Fig. 1, and is expressed by     

  

           ∆�?�,	= 
∆�?�,	�1 	D	∆�?�,	1� 	D	∆�?�,	11  				 ∈ ℜEF×GHF           (8) 

 

It can be observed, then, that the proposed decimated 2D-

EMD filter bank has a similar structure to the analysis stage of 

the 1D-EMD introduced in [8], but it has three rather than one 

error signal.  

 

 
 

Fig. 2. A decimated EMD octave filter banks made by the 

proposed algorithm 

 

Again, note that all ��,	 in Fig. 2 correspond to Ree or Iee, i.e. 

they have only the even samples (in both dimensions) of the 

parent node signal, ����,I.  The filter bank in Fig. 2 

decomposes X00 into four subimages, X11,  X21,  X30, and X31, 

with sizes M/2×N/2, M/4×N/4, M/8×N/8 and M/8×N/8, 

respectively.  It is easy to infer that in general, for 
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decomposition level l, the size of the image will be M/2
l
×N/2

l
.  

If index j in ��,	 is even (or zero), then it corresponds to Ree, 

otherwise it is Iee.  In Fig. 2, each error signal also gets 

reduced in size with every decomposition level, l, but in this 

case the size is M/2
l
×3N/2

l
, as there are three components, 

each corresponding to one ∆.  It seems counterintuitive, but 

despite the algorithm generates more signals (i.e. the error 

signals), it results in a significant reduction in storage capacity 

with respect both to the undecimated case and the original 2D-

EMD. A more thorough analysis of total capacity needed by 

the algorithm will be presented in Section 4. 

 

3. 2D-EMD SYNTHESIS FILTER BANKS 

 

A single synthesis stage of the decimated 2D-EMD filter bank 

is shown in Fig. 3.  It is basically the reverse process of the 

analysis stage, but the final signal recovery is achieved 

through the sum of the residual and IMFs at each 

decomposition step. Error images of ∆�?�,	�1 , ∆�?�,	1� , and  ∆�?�,	11   

are added back to the estimated residual by going through 2D 

interpolation and downsampling.  It is important to ensure the 

proper row and column indices of each error image are used, 

in order to recover the downsampled subimages, 9�1
�, �, 91�
�, �, and 911
�, � from equation (6). The low resolution 

reference residual, ��?�	,'	
� (i.e. Ree), is added back to the 

low resolution version of the first IMF, ��?�	,'	?�
� (i.e. Iee), 

to obtain reference subimage 9��
�, �. All recovered 

subimages are upsampled (shown as ↑2x2 in Fig. 3) and 

shifted back to be on the correct row and column indices by 

using the appropriate shift operation (i.e. one of ��, ��, ����). 

Hence, all recovered subimages (i.e. 9��
�, �, 9�1
�, �, 91�
�, �, and 911
�, �)	are weaved back correctly to recover 

the original upper image, ��,	
�, �. Note that estimates 9�1B 
�, �, 91�B 
�, �, and 911B 
�, �	stem from the reference Ree.  

Clearly, the same 2D interpolation method used in the analysis 

must be used in the synthesis if perfect reconstruction is 

desired.  To perform the synthesis operation of the whole 

system, single synthesis stages should be cascaded in the same 

tree structure as in Fig. 2, but operated from the end nodes of 

the tree to the root. Perfect reconstruction is proved by the 

following theorem. 

 

 
 

Fig. 3. One stage of synthesis part in decimated 2D-EMD 

filter banks proposed in this paper. 

 

Theorem: The decimated 2D-EMD filter bank shown in Fig. 1 

and Fig. 3 form perfect reconstructable filter banks with 

aliasing cancelling as long as identical 2D-interpolation 

techniques are applied in synthesis and analysis. 

 

Similar proof in [8] can be extended into 2D-EMD filter 

banks. However, the proof is trivial when we notice that if we 

use the same interpolation technique in both analysis and 

synthesis, the combination of the systems from Figs. 1 and 3 

are equivalent to the perfect reconstructable filter banks of 

Figure 12.9-5(b) in [9, pp. 634], having the diagonal 

decimation matrix M=2I.■ 

  

4. DATA REDUCTION RATIO OF THE PROPOSED 

ALGORITHM 

 

The proposed algorithm produces two children per node, each 

at one quarter of the size of the parent.  However, it also 

generates three error signals, each also of size M/2×N/2.  Thus, 

the outputs of each stage add to 1.25 M×N.  Adding the size of 

all children in a traditional 2D wavelet filter bank results in 

4×M/2×N/2 = M×N, i.e. more coefficients are required for the 

decimated 2D-EMD than for the wavelet transform.  The 

amount of coefficients needed to be saved for the decimated 

2D-EMD varies with the number of decomposition levels, L. 

More specifically, note that for a full binary tree there are 2
L
 

nodes in the tree, with each one having a subimage of size 

M/2
L
×N/2

L
.  Further, every level l has 2

l-1
 pairs of Ree and Iee, 

each pair generating error data of size M/2
l
×3N/2

l
.   Thus, we 

need to store  

 2@ × �'K × �'K + ∑ 2M�� N�'O × P�'O Q@MR�  = 
��'K + P��' N1 − �'KQ = 3. S32 − 12@?�U < 323. 

 

coefficients.  A full binary tree using the wavelet transform 

requires simply M×N coefficients.  Thus, the decimated 2D-

EMD needs at most 1.5 times more coefficients.   If, say, the 

octave decomposition tree structure is used, it is easily proved 

that the number reduces to roughly 1.3. 

The traditional 2D-EMD decomposition, i.e. without 

decimation, generates (L+1)(M×N) total data, resulting from L 

IMFs and one residual, each of size M×N. If we use one 

residual and one IMF and use it to generate an L-level full 

binary tree structure, then a total of 2@(3 × .) data is 

generated (for the undecimated 2D-EMD filter banks), as 2
L
 

nodes will occur. This is an upper bound, as arbitrary tree 

structures may not extend to a full tree.  The reduction ratio 

for using the decimated version, thus, is found with 

 

                 �� = 	 'K(��)EHFK 	?	GEHF N�� XFKQ 	= 	 'K	 XFK	?	GFN�� XFKQ         (9) 

 

For example, for an L=5 full binary tree, equation (9) yields �� ≈ 21.6, i.e. we need to store roughly 21.6 times less data 

than in the undecimated 2D-EMD case.  If, say, an L=5 octave 

tree is used, it can be proved that RR drops to approximately 

4.5, as there are less intermediate nodes in the tree generating 

error data.    
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5. EXPERIMENTAL RESULTS 

 

The proposed algorithm has been tested for several arbitrary 

structures.  Perfect reconstruction has been achieved, as 

demonstrated by PSNRs above 320 dB, implying only slight 

floating point errors.  Fig. 4 compares the proposed algorithm 

with traditional 2D-EMD having a dyadic filter banks. The 

first column of Fig. 4 shows traditional 2D-EMD using [4] 

with 3 IMFs and a residual, where the first, second and third 

IMFs and the residual are ordered from top to bottom. The 

size of all IMFs and the residual is identical to the original 

image, 256×256 (i.e., no decimation).  The second column 

shows the decimated versions of the first column, with a 

downsampling factor of 2M both in row and column directions, 

where l=1, 2, 3 for each decomposition level (i.e., the order of 

IMF). Thus, the images sizes of the second column are 

256/2
l
×256/2

l
 . The proposed algorithm’s images are shown in 

the third column. Note that the images in the second and third 

columns are very similar, from which we can infer that the 

tree structure of traditional 2D-EMD with downsampling is 

similar to that of the proposed algorithm. However, as 

mentioned before, simple downsampling of traditional 2D-

EMD is not perfectly reconstructable and it has no option to 

adapt to diverse tree structures. The proposed algorithm has 

many advantages for data reduction while keeping perfect 

reconstruction in any arbitrary tree structures. 

 

                        

                                

                                    

                                    
                      

Fig. 4. Comparison the proposed algorithm with traditional 

2D-EMD in Fig. 2 tree structure. 

 

Fig. 5 shows all error images of  ∆�,C�1 , ∆�,C1� ,  ∆�,C11  and ��,� (i.e., 

Iee) for node (1,0) in Fig. 2 on (left upper), (right, upper), (left, 

lower), and (right lower) corners of the image. As expected, 

all error images are very similar to each other because all 

images have high frequency components from the original 

image compared to the residual of Ree. Hence, it generates 

somewhat redundant information, although all error 

information is needed for perfect reconstruction. In order to 

compare with traditional wavelet filter banks, we use a full 

binary tree structure with L=2.  The images are combined into 

one and shown in Fig. 6, together with the correct mapping of 

nodes. Since all error images and ��,'	?� (i.e., Iee) correspond 

to similar highpass information, ��,'	?� is used instead of ∆�,	11. 

From Figs. 5 and 6 it is apparent that all error image and Iee 

correspond to combined versions of LH, HL, and HH bands in 

a traditional wavelet transform, i.e. they include horizontal, 

vertical and diagonal high frequency information. 

 

 
Fig. 5. All error images and Iee (i.e.,	��,�) images for node 

(1,0) in Fig. 2. 

 

 
Fig. 6. Combined image using the node images of the 

proposed decimated 2D-EMD filter banks for the tree 

structures of given nodes, (2,0), (2,1), (2,2), (2,3). 

 

6. CONCLUSIONS 

 

This paper presents an extension of the algorithm introduced 

by the authors in [8] to incorporate decimation into the 

traditional 2D-EMD, without eliminating the perfect-

reconstruction property.  Moreover, the algorithm permits the 

generation of any arbitrary tree, while displaying good data-

reduction ratios with respect to traditional 2D-EMD 

algorithms. The algorithm can use any 2D-EMD 

implementation, as long as it is not based on separable filter 

banks.   
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