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ABSTRACT

This paper presents a new approach to measuring the simi-
larity between two images using sparse reconstruction. Our
approach alleviates the difficulty of selecting and extracting
suitable features from images which usually requires domain-
specific knowledge. The proposed measure, the Sparse SNR
(SSNR), does not use any prior knowledge about the data type
or the application. SSNR is generic in the sense that it is ap-
plicable, without modification, to a variety of problems in-
volving different types of images. Given a pair of images, a
set of basis vectors (dictionary) is learnt for each image such
that each image can be represented as a linear combination
of a small number of its dictionary elements. Each image is
reconstructed by two dictionaries - the one trained on the im-
age itself and the second - trained on the other image. We
develop a novel similarity measure based on the resulting re-
construction errors. To the best of our knowledge, this is the
first attempt to develop a sparse reconstruction-based similar-
ity measure. Excellent classification, clustering and retrieval
results are achieved on benchmark datasets involving facial
images and textures.

Index Terms— image similarity, overcomplete dictio-
nary, sparse reconstruction.

1. INTRODUCTION

A fundamental issue in image processing and understanding
is that of measuring the similarity between a pair of images.
Given the long history of similarity evaluation, numerous im-
age similarity and distance functions exist in the literature -
the simplest ones being the Mean Squared Error and the Eu-
clidean distance. These measures compute the distance be-
tween images on a point-to-point basis and can not therefore
interpret the visual appearance of images [1].

For problems like clustering, classification, retrieval, etc.
where the results need to be compatible with the human no-
tion of similarity, understanding the visual appearance of im-
ages is critical. This is often done by describing an image
in terms of a set of features - a set of vectors with certain
numerical attributes. The similarity between two images is
then computed in terms of the similarity between their fea-
tures. Although feature-based approaches are predominant,

they suffer from a major limitation concerning the represen-
tational ability of the features. There are many domains (e.g.
protein sequences) where it is not possible to find or even de-
fine satisfactory features. The features also need to be adapted
to the application. Along with the features, the similarity
measure also has to be changed or modified with the problem
under consideration, e.g. the Mahalanobis distance is popu-
lar in comparing numerical vectors [2], while structured data
like trees and graphs use the notion of edit distance [3], the
earth mover’s distance is useful for image retrieval [4], and
the Euclidean distance works well for k-means clustering.

Recently, there has been a strong interest in developing
generic similarity measures that are not specific to any appli-
cation or data-type. One line of approach is to learn the simi-
larity metric from the training data [2]. This method learns a
Mahalanobis metric from a set of training samples. However,
the method requires a good amount of training data in order to
learn an effective similarity metric. Another approach relies
on the information theory to quantify the complexity of one
image in terms of the other [5, 6]. A practical algorithm based
on this idea uses standard compression techniques to quantify
how much information of one signal is contained in the other
[6]. Although this method produces promising results for 1D
discrete signals like text, its performance is not satisfactory
for high dimensional signals such as images [7].

In this paper, we develop a generic similarity measure for
images based on the theory of sparse signal representation.
Several supervised classification algorithms based on the idea
of sparse representation have been proposed in the past few
years [8, 9, 10]. However, the problem of similarity measure-
ment has not been addressed. To the best of our knowledge,
this is the first attempt to develop a sparse reconstruction-
based image similarity measure.

The basic idea in sparse analysis is to represent a signal
by a linear combination of a small number of basis functions.
It is well known that this is possible for many natural sig-
nals, such as audio and images, as long as they have sparse
representation w.r.t. a properly chosen transform domain, e.g.
music signals can be represented by a small number of si-
nusoids as they are sparse in the Fourier domain. Similarly,
many natural images are sparse in wavelets domain.

In practice, however, signals are often a mixture of several
structures. To achieve sparsity in such cases, we must com-
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bine multiple bases. This results into an overcomplete dictio-
nary - a set of basis vectors, where the number of bases is
greater than the dimensionality of the input. Since the bases
are tailored to represent signals similar to the training sam-
ples, an overcomplete dictionary requires fewer basis vectors
to represent an input compared to complete dictionaries. This
leads to higher sparsity in the transform domain. Overcom-
plete representations are also robust to additive noise, occlu-
sion and translation of the input signal [11].

Given a pair of images, an overcomplete set of basis func-
tions (not necessarily orthogonal) is learnt from each image
such that each image has a sparse representation w.r.t. the
bases. This approach mimics the human visual system; it has
been shown that the basis functions learnt this way are quali-
tatively similar to the receptive fields of the simple cells in the
mammalian primary visual cortex (V1) [12].

Once the dictionaries are learnt, they are used to quantify
how well one image can be reconstructed using the informa-
tion of the other. Each image is reconstructed by two dic-
tionaries: the one trained on the image itself and the second
one trained on the other image. We develop a novel similarity
measure based on the resulting reconstruction errors. We use
the signal-to-noise ratio (SNR) between the original and the
reconstructed images to compute a similarity score which we
name the sparse SNR (SSNR). To demonstrate the generality
of SSNR, we perform experiments involving various applica-
tions. Our purely similarity-based results are comparable or
better than the state-of-the-art indicating its high potential.

2. THE PROPOSED SIMILARITY MEASURE

Let us consider a pair of images, X and Y , both in RN . A
natural way of measuring the similarity between X and Y is
to quantify how well one image can be represented using the
information in the other image. The more similar the images,
the better is the representation of one image in terms of the
other. Following this idea, we first build a dictionary for each
image by extracting its dominant local structures. A similar-
ity measure is then developed to measure how accurately one
image can be approximated using the dictionary of the other.
The steps of our proposed approach is described below.

2.1. Patch extraction

In order to learn an overcomplete dictionary for an image a
large number of overlapping patches of dimension

√
n×
√
n

are extracted randomly from each image and used as training
samples for dictionary learning. Ideally, one patch centered
at every image pixel is to be extracted; but in practice, ex-
tracting any large number of patches is sufficient for learning
a good dictionary. Every image patch is converted to a vec-
tor of length n. Let the two sets of patches extracted from
two images X and Y respectively be PX and PY , where

PX ,PY ∈ Rn×m and m is the total number of patches ex-
tracted from each image.

2.2. Dictionary learning

The next task is to learn an overcomplete dictionary for each
image using the patches as input. For X , the goal is to learn
a dictionary ΦX ∈ Rn×k having k (k > n) atoms, such that
each patch (column vector) pxi

∈ PX can be represented as
a linear superposition of no more than τ (τ << k) dictionary
atoms. This optimization problem is therefore framed as

min
ΦX,qx

m∑
i=1

‖pxi
−ΦXqxi

‖22 s.t.∀ i ‖qxi
‖0 ≤ τ (1)

where qxi
∈ Rk represents the coefficients of the sparse rep-

resentation of pxi by ΦX and ‖.‖0 is the `0 seminorm that
counts the number of non-zero elements in a vector. Simi-
larly, a dictionary ΦY is learnt for image Y . Due to the pres-
ence of the `0 term, (1) becomes a non-convex optimization
problem, solving which accurately is NP hard. Instead, ap-
proximate solutions are found using greedy algorithms e.g.
orthogonal matching pursuit (OMP) [13] or by `1 optimiza-
tion [14]. We employ a fast dictionary learning algorithm
called K-SVD [15] that solves (1). It performs two steps at
each iteration: (i) sparse coding and (ii) dictionary update. In
the sparse coding step, ΦX is kept fixed and qx is computed
using OMP. During the second stage, the atoms of ΦX are
updated sequentially, allowing the relevant coefficients in qx

to change as well. For details of this algorithm please refer to
the original K-SVD paper [15].

2.3. Similarity Measure

In this section, we develop a measure of similarity between
images X and Y . Recall that, their corresponding overcom-
plete dictionaries are ΦX , ΦY . A dictionary of an image is
learnt by adapting the dictionary elements to the local struc-
tures of an image. Consequently, the atoms get tailored to rep-
resent the structures similar to those in the training samples.
If X and Y are similar in appearance i.e. they have similar
local structures, then ΦX and ΦY will also be similar. In this
case, ΦX will approximate the structures in Y with high ac-
curacy i.e. the error obtained while representing Y using the
dictionary of X will be small. The same will be true for the
pair X and ΦY .

Consider two sets of random patches UX = {uxi}
l
i=1

and UY = {uyi}
l
i=1 (where uxi and uyi are in Rn) extracted

from X and Y respectively. These patches are different from
the patches used in learning. Let ÛX and UX be the closest
approximation (with a predefined sparsity constraint) of UX

by ΦX and ΦY respectively.

min
vx

l∑
i=1

‖ûxi
−ΦX v̂xi

‖22 s.t.∀ i ‖v̂xi
‖0 ≤ τ (2)
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Fig. 1. Sample images from the AT& T face dataset (top row)
and the Brodatz texture dataset (bottom row).

min
vx

l∑
i=1

‖uxi
−ΦY vxi

‖22 s.t.∀ i ‖vxi
‖0 ≤ τ (3)

Similarly, ÛY and UY are the closest approximations of UY

by ΦY and ΦX . The proposed SSNR function S (X,Y ) :
RN × RN → R is defined as

S (X,Y ) =
SNR

(
UX ,UX

)
+ SNR

(
UY ,UY

)
SNR

(
UX , ÛX

)
+ SNR

(
UY , ÛY

) (4)

where, SNR is the signal-to-noise ratio. The numerator in (4)
compares UX and UY with their cross-approximations UX

and UY . If X and Y are similar, both terms in the numerator
will have large value. On the other hand, with significantly
different X and Y such cross-approximations will produce
low SNR values since ΦX and ΦY will be quite dissimilar.
The numerator is therefore a measure of similarity between
two images. The more similar the images, the larger is the
numerator. The denominator works as a normalizing factor.
Note that,

SNR
(
UX ,UX

)
≤ SNR

(
UX , ÛX

)
SNR

(
UY ,UY

)
≤ SNR

(
UY , ÛY

) (5)

The above inequalities imply that S (X,Y ) ≤ 1. The highest
value of 1 is achieved whenX = Y . The proposed SSNR has
the following properties:
Non-negativity: 0 < S (X,Y ) ≤ 1. The similarity of an
image to itself is one i.e. S (X,Y ) = 1 only when X = Y .
Symmetry: S (X,Y ) = S (Y,X). Symmetry is important
because many clustering algorithms (e.g. spectral clustering)
rely on this property.

3. PERFORMANCE EVALUATION

The generality of SSNR is demonstrated through four differ-
ent applications: (i) facial image clustering, (ii) face recogni-
tion, (iii) texture classification and (iv) retrieval. For valida-
tion, two benchmark datasets (AT&T face and Brodatz texture
datasets, see Fig. 1) are used. To learn a dictionary from an

Table 1. Face recognition results on the AT&T dataset.

Approach Recognition rate
Eigenface [18] 92.6%

`1 optimization [9] 93.3%
Mahalanobis [2] 97.4%
Proposed SSNR 98.3%

Table 2. Classification Results on the Brodatz texture dataset.

Approach Classification accuracy
Affine invariant [19] 87.4%

Gabor filter [20] 85.1%
Proposed SSNR 86.3%

image, a set of 3, 000 random patches of size 8 × 8 are ex-
tracted from the image. Each trained dictionary (dimension
64× 128) is learnt using τ = 8 and 10 K-SVD iterations.

3.1. Clustering:

Clustering is the problem of automatically discovering the la-
bels when unlabeled data is provided to the system. We per-
form clustering on the AT&T face dataset. This is a bench-
mark dataset that contains 400 grayscale images of 40 indi-
viduals in 10 poses. The images are collected at different
times, with varying illumination, facial expressions and de-
tails. For clustering, a 400 × 400 similarity matrix is com-
puted using SSNR. This matrix serves as the input to a stan-
dard spectral clustering algorithm [16]. The mean clustering
accuracy for our method is 79.7% with a standard deviation
of 3.4%. This result is much superior to the correlation-based
clustering that yields 68.5% mean accuracy and a standard
deviation of 2.8%. The accuracy of the clustering results is
measured using the Hungarian algorithm [17].

3.2. Face Recognition:

Face recognition experiment is performed on the AT&T face
dataset. At each run, a training set is constructed by randomly
selecting 7 images per class and the remaining 3 are used for
testing. Classification is performed in a 3-Nearest Neighbor
(3NN) framework. Table 1 presents the recognition results.
Our result is compared with the state-of-the-art methods like
`1-based classification approach [9] and the metric learning
approach [2]. The result from the Eigenface [18] is used as
baseline. Our results show improvement over all these meth-
ods.

3.3. Texture classification:

The Brodatz texture dataset used is the best-known texture
dataset in literature. This is a highly diverse set of textures,
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Fig. 2. Retrieval results for five query images from the Bro-
datz dataset. Eight nearest images are retrieved in each case.
The images bordered in red, although perceptually similar to
the query, belong to a different class from the query.

some of which are perceptually quite close, while others are
so inhomogeneous that it is very difficult, even for a human
observer, to group their samples correctly. Following the
methodology in [19], every image in each of the 111 texture
classes is subdivided into 9 images of size 128 × 128. These
9 images are considered as samples of the same class. The
training set is constructed by randomly selecting 3 images
per class and the rest are used for testing. We use 1NN clas-
sification and 10 fold cross-validation. The results in Table
2 show that our classification accuracy is comparable with
the current state-of-the-art. Interestingly, the methods that we
compare with were specifically developed for texture classi-
fication (with texture-specific features) while our measure is
generic and does not use any texture-specific features.

3.4. Retrieval:

A retrieval system, when provided with a query image, re-
turns images from a large dataset that are perceptually similar
to the query. For each query, SSNR is used to compute the
similarity between the query and the remaining 998 images in
the Brodatz dataset. The K nearest images with highest sim-
ilarity are retrieved. Fig. 2 presents the retrieval results for 5
different query images where K = 8. For query 1 and 4, all
the retrieved images belong to the class of the query yielding
an retrieval accuracy of 100%. For query 2 and 4, 1 out of the
8 retrieved images does not belong to the class of the query
i.e. the accuracy is 87.5%. Query 3 has 75% accuracy.

The performance of a retrieval system is often measured
in terms of average recall which is defined as the ratio of the
number of correct retrievals to the number of images available
for the query class, expressed in terms of %. For example, in
the Brodatz dataset each class contains 9 images, when one
is used as query, 8 are available for retrieval. If 10 nearest
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Fig. 3. Shown are the image retrieval results using SSNR and
the state-of-the-art [19] on the Brodatz texture dataset. Our
method closely follows the state-of-the art results: for number
of retrievals = 8, the proposed SSNR has the average recall ac-
curacy of 75.9%, which is comparable to the state-of-the-art
accuracy of 76.2%. As the method in [19] is specifically de-
signed for texture classification and retrieval, the performance
of SSNR is quite encouraging.

images are retrieved and 4 out of those 10 belong to the query
class, the recall for that query is 50%. Average recall is com-
puted by averaging over all queries. Our average recall re-
sult is compared with [19] in Fig. 3 where SSNR-based result
closely follows the result of the state-of-the-art [19].

4. CONCLUSION

The main contribution of this work is developing a new im-
age similarity measure (SSNR) based on the theory of sparse
signal reconstruction. The advantage of this measure is that
it does not use any prior knowledge about the application or
the images being used. This alleviates the difficulty of se-
lecting and extracting suitable features which often require
domain-specific knowledge. SSNR is shown to produce state-
of-the-art results for four applications involving images that
are very different in nature (texture and faces). Our experi-
mental results are purely based on similarity i.e. no sophis-
ticated machine learning techniques have been used. Com-
bining SSNR with powerful machine learning techniques will
improve speed and accuracy further. SSNR can also be easily
extended to work for color images and videos.
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