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ABSTRACT

Coded aperture snapshot spectral imaging systems (CASSI)
measure the 3D spatio-spectral information of a scene using
several compressive 2D focal plane array (FPA) snapshots.
The image reconstruction algorithms utilized in CASSI use
a first-order approximation of the underlying analog sensing
phenomena. A calibration method is then used to compensate
for the coarse approximation – an approach not well suited
for multishot CASSI systems. This paper develops a more
accurate computational model for CASSI which provides a
higher quality of image reconstruction. Several simulations
are shown to illustrate the performance improvement attained
by the new model.

Index Terms— Hyperspectral imaging, compressed sens-
ing, optical imaging, coded aperture

1. INTRODUCTION

Coded aperture snapshot spectral imaging (CASSI) [1, 2]
systems as depicted in Fig. 1 capture the spectral information
of a scene using a small set of coded focal plane array (FPA)
compressive measurements [3, 4]. Compressed sensing (CS)
reconstruction algorithms are then used to reconstruct the un-
derlying spectral 3D datacube [5]. Each CASSI measurement
is a highly structured random projection of the underlying
scene. The structure of these projections is dictated by the
CASSI optical system whose only varying components are
the aperture code entries. The coded apertures are crucial as
they determine the minimum number of FPA measurements
needed for correct image reconstruction and the correspond-
ing attainable quality. A hyperspectral datacube F with
N × N as spatial dimensions, and L spectral planes, can be
represented in lexicographical notation as f ∈ RN2L. Sup-
pose, f is K-sparse in some basis Ψ such that K � N2L.
CS theory determines that f can be recovered fromm random

This research was supported in part by ONR under the contract
NOOO14-1O-C-0 199 and by NSF under the grants EECS-0725422 and
CCF-0915800.

(a) Optical setup

(b) Physical phenomenon

Fig. 1: Coded aperture-based snapshot spectral imaging sys-
tem (CASSI). (a) Optical elements present in CASSI. (b)
Analog physical phenomenon. The hyperspectral scene (dat-
acube) is first spatially modulated by the coded aperture, then
dispersed by the dispersive element, and finally integrated in
the FPA detector.

projections whenm & K log(N2L). The random projections
in CASSI are modeled as g = Hf , where H is the optical
transmission function which accounts for the coded aperture
and the dispersive element operations. The N × N × L
spectral scene is measured by an N × N + L − 1 FPA de-
tector, thus H is aN(N+L−1)×(N2L) projection matrix.

The CASSI model in [1] describes the discretization de-
picted in Fig. 2(a), where a slice of the datacube at a given
wavelength is coded by the aperture code, it is sheared lin-
early by the dispersive element with dispersion S(λ) and
projected onto the detector. In this model, the dispersion is
such that a datacube voxel impinges in a single FPA pixel.
We refer to this model as the “coarse model”. The projections
in CASSI are however the result of an analog phenomenon
where discrete spectral bands do not exist. Instead, the dat-
acube contains a continuous set of wavelengths which are all
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(b) Higher-Order-Precision CASSI Model

Fig. 2: CASSI versus Higher-Order CASSI integration models. (a) In the CASSI model, the dispersion is applied at the spectral
band level, where a voxel impinges in a single FPA pixel. (b) In the Higher-Order CASSI model, the dispersion is applied at
the sub-band level, such that a voxel impinges into several adjacent FPA pixels.

dispersed according to the prism characteristics. The pro-
jection of a single datacube voxel onto the FPA detector is
therefore not limited to a single pixel in the detector, but it
is projected onto several adjacent pixels as shown in Fig.
2(b). In the coarse model, this effect is treated as blurring
across adjacent detector pixels that can be ameliorated by
calibration. Our contribution in this paper is to characterize
the discretization of the analog physical phenomena more
precisely and thus avoid calibration and loss of information.
This, in turn, modifies the H matrix so as to account for the
higher order discretization model. Thus, the coarse CASSI
model in [1] can be regarded as a first order approximation
of the compressive imaging sensing process. In the following
sections, we detail the higher-order discretization model in
CASSI, and its implications on the CS inverse problem and
signal reconstruction.

2. SYSTEM MODEL

2.1. CASSI Model

Denote the analog 3D spatio-spectral power source density as
f0(x, y, λ), where x and y index the spatial coordinates and λ
indexes the wavelength. As shown in Fig. 1(b), the source is
first spatially modulated by the coded aperture T (x, y) result-
ing in the coded field f1(x, y, λ). After propagation through
the coded aperture, the spatially modulated spectral informa-
tion is spectrally dispersed by a dispersive element. The spec-
tral density at the output of the dispersive element, can be ex-
pressed as,

f2(x, y, λ) =

∫∫
T (x′, y′)f0(x′, y′, λ)

δ(x′−(x−S(λ)))δ(y′−y)dx′dy′, (1)

where δ(x′− (x−S(λ)))δ(y′− y) represents the optical im-
pulse response of the system and S(λ) = α(λ)(λ−λc) repre-
sents the dispersion induced by a dispersive element centered
at the wavelength λc with a dispersion coefficient α(λ). The
resultant intensity image at the FPA is the integration of the
field f2(x, y, λ) over the detector’s spectral range sensitivity
(Λ), that can be represented as g(x, y) =

∫
Λ
f2(x, y, λ)dλ.

Assuming ideal optical elements, a 2D FPA snapshot can be
expressed as,

g(x, y)=

∫
Λ

T (x−S(λ), y) f0 (x−S(λ), y, λ) dλ. (2)

Since the detector array is spatially pixelated, in the coarse
CASSI model (Fig. 2(a)), the (m,n)th pixel measurement is
given by,

gmn =

∫∫
p(m,n;x, y)g(x, y)dxdy + ηmn, (3)

where ηmn represents additive noise and p(m,n;x, y) repre-
sents the detector pixelation, which is given by p(m,n;x, y) =
rect

(
x
∆−m,

y
∆−n

)
, with ∆ being the pitch of the detector.

2.2. Higher-Order CASSI Model

The model in Eq. 3 is such that a single voxel impinges on a
single FPA pixel. As depicted in Fig. 2(b), however, the anal-
ogous sensing phenomena is such that a single voxel impinges
onto several adjacent FPA pixels. Hence, a higher-order ap-
proximation is proposed as depicted in Fig. 2(b). Using Eq.
(2) and defining boundaries for the FPA integration, the mea-
surement at the (m,n)th detector pixel can be rewritten as,

gmn=

(n+1)∆,(m+1)∆∫∫∫
n∆,m∆,Λ

T (x−S(λ), y)f0(x−S(λ), y, λ)dλdxdy. (4)
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The discretization of the analog three-dimensional scene is
given by measuring the energy concentrated in each voxel
fijk of the datacube. It can be represented as the integration
of the datacube between voxels boundaries as,

fijk =

(i+1)∆∫
i∆

(j+1)∆∫
j∆

λk+1∫
λk

f0(x, y, λ)dλdydx, (5)

where i, j, and k are discrete indices representing x, y, and
λ respectively. The spectral axis λ is discretized in L spectral
bands, and the spatial axis in N rows and N columns. The
range of the kth spectral band is [λk, λk+1] where λk is the
solution to the equation S(λk) − S(λ0) = k∆, for k =
0, . . . , L − 1. Using this discretization model, the (m,n)th

measurement in Eq. 4 becomes,

gmn=

(n+1)∆,(m+1)∆∫∫
n∆,m∆

 λ1∫
λ0

T (x−S(λ), y)f0(x−S(λ), y, λ)dλ

+ . . .

+

λL∫
λL−1

T (x−S(λ), y)f0(x−S(λ), y, λ)dλ

dxdy. (6)

Figure 3 shows a zoomed version of one voxel of the source
after it is sheared by the prism. Notice that its energy will
impinge on up to three different FPA pixels. Each voxel at the
source can then be partitioned into three different regions de-
noted as R0, R1, and R2. Depending on the nature of S(λ),
a voxel may affect more than 3 detector elements. A gen-
eral model can be achieved using the set of M × L matrices
{W(u)

k }
p−1
u=0 which represent the datacube voxels weights dis-

tribution. The weights in a matrix W(u) matrix can be shown
to be,

ω
(u)
mnk =

1

∆2

∫∫∫
{x−S(λ),y,λ}∈Ru

dxdydλ, (7)

for u = 0, . . . , p − 1. Here p represents the number of FPA
pixels that a single datacube voxel impinges on. It is given by
p = ps + 1 for linear dispersion and p = maxd(m + 1)∆ −
S(λk)e for an specific kth spectral band when a non-linear
prism is used. Assuming the energy is distributed uniformly

gm,n

!

!!k !k+1

S(!k )
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Fig. 3: A single datacube voxel impinges onto 3 adjacent
detector pixels

in each spectral band, the integrals in Eq. 6 can then be ap-
proximated by,

λk+1∫∫∫
λk {x−S(λ),y}∈Ru

f(x−S(λ), y, λ)dxdydλ=ω
(u)
mnkt(m−u)nf(m−u−k)nk,

(8)
for u = 0, 1, . . . , p− 1. Using Eq. (8), the portion of the dat-
acube impinging in the (m,n)th detector pixel for the higher-
order CASSI, can be succinctly expressed as,

gmn =

L−1∑
k=0

p−1∑
u=0

ω
(u)
mnkt(m−u)nf(m−u−k)nk. (9)

3. HIGHER-ORDER MATRIX MODEL

Expanding the model of the (m,n)th pixel to the complete
FPA measurement, the general higher-order discretization
model is given by

gi = Hif , (10)

for the ith FPA shot, where f is the N2L hyperspectral dat-
acube in lexicographical notation, Hi is aN(N+L+p−1)×
N2L matrix representing the optical transmission function,
and gi a N(N + L + p − 1) vector accounting for the com-
pressed FPA measurement. The transmission function can be
expressed as,

Hi = PTi (11)

where P represents the dispersive element operation and Ti

the coded aperture. Notice that P is fixed, while Ti varies
each shot. Here Ti is a block-diagonal matrix given by,

Ti =


diag(ti) 0N2 · · · 0N2

0N2 diag(ti) · · · 0N2

...
...

. . .
...

0N2 0N2 · · · diag(ti)

 , (12)

where ti is the ith coded aperture in lexicographical notation
and 0N2 is a N2×N2 zero-matrix. The matrix P is given by
P =

∑d
u=0 Pu, such that

Pu=



0Nu×N2L

diag(Wu
0 ) 0N×N2 · · · 0N×N2

0N×N2 diag(Wu
1 )· · · 0N×N2

...
...

. . .
...

0N×N2 0N×N2 · · · diag(Wu
L−1)

0N(p−u)×N2L


. (13)

Equation (10) can be succinctly expressed as,

g = Hf , (14)

where H =
[
HT

1 , H
T
2 , . . . ,H

T
K

]T
, with K being the number

of FPA measurements.
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4. SIMULATION RESULTS

A spectral data cube F with 256 × 256 pixels of spatial res-
olution and L = 8 spectral bands is experimentally obtained
by clustering 170 monochromatic images captured every 1nm
in the spectral range {450nm – 620nm}. In order to simulate
the analog sensing process, the compressive FPA measure-
ments are obtained using the 170 monochromatic images of
the datacube. The reconstruction process aims to recover the
spectral information in the 8 spectral intervals {450 − 463},
{464 − 477}, {478 − 493}, {494 − 510}, {511 − 530},
{531− 556}, {557− 586} and {587− 620}. Notice that the
intervals widths are not constant, as a non-linear dispersive
element is used. Aperture codes of size 256 × 256 are em-
ployed. Their entries are realizations of a Bernoulli random
variable with parameter p = 0.5. The calibration weights
for the proposed model are approximated using Eq. (7) and
the dispersion curve. Given the set of compressive measure-
ments, the voxels weights distributions and the set of coded
apertures, the spectral datacube is recovered using the GPSR
algorithm [6]. This algorithm solves the optimization prob-
lem, f̂ = Ψ3D{argminθ′‖g −HΨ3Dθ

′‖22 + τ‖θ′‖1}, where
τ > 0 is a regularization parameter that balances the con-
flicting tasks of minimizing the least square of the residuals,
while at the same time, yields a sparse solution. The basis
representation ΨΨΨ3D is set as the Kronecker product of three
basis ΨΨΨ3D = ΨΨΨ1⊗ΨΨΨ2⊗ΨΨΨ3, where the combination ΨΨΨ1⊗ΨΨΨ2

is the 2D-Wavelet Symmlet 8 basis and ΨΨΨ3 is the Discrete
Cosine basis. The reconstructions are performed using the
new model in Eq. (9), and the traditional model in Eq. (3).
Figure 4 shows the PSNR of the reconstructions for the two
models as function of the number of measurement shots. The
gain achieved by the new model is quantitatively noticeable
by averaging the PSNR of the recovered datacubes. This im-
provement approaches 4 dB when more than two FPA shots
are used. Figure 5 depicts the 2nd, 4th, 6th and 8th bands of
the reconstructed datacube when 6 shots are captured for both
models. It can be observed that the new model recovers the
spectral information with higher accuracy.

5. CONCLUSIONS

A higher-order precision model for coded-aperture-based
spectral imaging systems has been developed. The new ap-
proach provides a more accurate discretization model of the
analog phenomena in CASSI. Simulation results show a re-
construction improvement of up to 4 dB compared to that
attained with the coarse traditional CASSI model.

6. RELATION TO PRIOR WORK

This work provides a more accurate discretization model for
spectral imaging systems previously proposed in [1]-[4].

1 2 3 4 5 6 7 8
20

21

22

23

24

25

26

27

Measurement shots

P
S

N
R

 

 

CASSI

Higher Order Model

Fig. 4: Averaged PSNR of the reconstructed datacubes as
function of the measurement shots. The traditional and the
higher order precision models are compared.
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Fig. 5: Reconstruction of the 2nd, 4th, 6th and 8th bands
when using 6 FPA shots. First row are the original bands.
Second and third row are the reconstructions for the tradi-
tional and higher-order CASSI models. The PSNR averages
across the 8 bands are 22.3 dB and 26.85 dB, respectively.
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