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ABSTRACT

The dominance of Poisson noise over signal independent
Gaussian noise and other types has been demonstrated for
commercial digital color cameras. We present a new method
for estimating CIE colorimeric values in the presence of Pois-
son noise. The new methods use multidimensional look-up
tables (MLUTs) and are easily adapted to the local statistics
of the image. The methods are shown to perform better than
common methods that are based on signal independent noise
models.

Index Terms— digital imaging, digital cameras, noise
models, color estimation, denoising

1. INTRODUCTION

There have been many applications that use digital cameras
for precision measurements. Most are familiar with those in
astronomy and space exploration [1] and recording of mu-
seum artwork [2, 3, 4]. Common to these applications is the
fabrication of a camera or camera system that is designed for
the specific application. As digital cameras have improved
in both resolution and dynamic range, users have begun to
consider using commercial cameras for applications that re-
quire accuracy in both spatial resolution and colorimetry. In
this paper, we consider the colorimetric requirements of such
cameras and introduce methods to better estimate CIE colori-
metric values from the device dependent RGB values of the
camera. These results are important in such applications as
medical imaging, book capture and textile quality control.

In using a commercial camera, we are limited to post-
processing of the recorded data. We cannot tamper with the
internal hardware of the device. We can perform various tests
that will characterize the individual subsystems of the camera.
Our goal is to show how to use a commercial camera to ob-
tain colorimetric values at a spatial resolution that is needed
for the applications mentioned above.

In order to use a camera to obtain spatially accurate color,
we need to consider several aspects of the camera’s image
capture process. The data capture process depends on the
optics that control the focus and uniformity of the image on
the sensor, the sensor characteristics that transform the radi-
ant spectral color information to digital values, and the noise

characteristics of the analog and digital electronics that distort
the recorded image data. The user cannot alter any of these
characteristics, but can measure them and adjust the process-
ing to reflect these properties. In this work, we consider the
transformation from the device dependent RGB values of the
camera to the device independent colorimetric values repre-
sented by CIEXYZ or CIELAB,

Our transformation accounts for the dominance of Pois-
son noise in the image capture process. There has been other
work addressing Poisson denoising but not in the context of
colorimetric estimation [5, 6, 7]. Some use of color cameras
for colorimetric works was done, but they did not consider
Poisson noise or local processing [8, 9]. The demosaicking
work by Hirakawa and Parks, [10], addresses Poisson noise
and color fidelity but in a global sense, using the sCIELAB
metric. They assume the sRGB values of the camera are ac-
curate colorimetrically. We develop three algorithms to esti-
mate the colorimetric values. The methods vary from global
to local processing and linear to nonlinear transformations.
As might be expected, the locally adaptive, nonlinear method
performs best.

2. SPATIALLY ACCURATE COLOR

Since cameras record three color channels, it can be regarded
as a spectroradiometer. Typical spectroradiometers record the
spectrum across the visible range, 390nm to 730nm, at a
resolution of 4-10nm. The angle of the single measurement
ranges from 2 degrees to as small as 1/8 degree. Finally, the
accuracy of the measured value is extremely high due to pre-
cision optics and well-calibrated sensor. The instrument is
environmentally conditioned to be stable and calibrated with
a source traceable to NIST standards.

The camera has the great advantage of recording high res-
olution images. The angle of the measurement of a single
pixel is a small fraction of a degree, 0.005 degree or less. The
color fidelity and noise properties are significantly poorer.
With only three (or sometimes four) spectral bands, the cam-
era cannot approach the spectral resolution of the spectrora-
diometer, nor the color accuracy of a dedicated colorimeter.
The major problem is that the color filters of the camera do
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not allow an accurate transformation to the CIE color space.
Finally, the noise associated with the camera sensor is much
larger than that of the dedicated device. The radiometer re-
quires longer exposures to achieve the low noise levels, usu-
ally a minimum of 5ms, for very bright sources. The camera
is designed for higher shutter speeds to stop the movement
degradation of images. The cost of faster shutter speed is
higher noise, caused by shorter integration times for the ex-
posure and higher amplification of recorded data.

There are three main problems with commercial cameras
other than Poisson noise that affect the accuracy of color es-
timation at the pixel level. These include spatial uniformity,
variation of the filters and gains of the individual sensor cells
and the dynamic range effects of dealing with images.

Camera optics typically have variability across the focal
plane. For applications that require comparison of colorimet-
ric values across the entire frame, this problem is important.
For the case of quality control of patterned textile material,
this must be accounted for. However, for this work, we will
consider only local effects and the spatial nonuniformity is
measured as a variation in the luminance of the CIELAB es-
timation. The correction for nonuniformity can be done after
the estimation for colorimetric values.

The second problem is nonuniform response of the in-
dividual sensors, called Photo Response NonUniformity
(PRNU). This is caused by a variation in the spectral sen-
sitivity of the filter and the electronic gain at an individual
pixel. The combination of the two effects is to produce a sig-
nal dependent noise whose variance is linear with the square
of the mean signal (number of photons). This noise will
dominate the photon noise that is linear with the mean of the
signal at high intensity, since the proportionality is dependent
on the variance of the nonuniformity at the pixel level. In the
authors’ experience, modern CCD devices are so consistent
that this PRNU is not a significant noise factor. Consider the
plots of variance vs. mean in [10, 11].

3. COLORIMETRIC ESTIMATION

We present three approaches to color estimation. In all of
the approaches, we assume we have a collection of K sam-
ple reflectances, {rk}Kk=1, that represent an ensemble of inter-
est. The reflectances are N × 1 vectors that represent the re-
flectances for the wavelengths within the visible range, about
390nm to 730nm. The camera RGB values, c, are obtained
by the model

c = STLr + η (1)

where S is a N × 3 matrix of spectral sensitivities of the red,
green and blue sensors in the color filter array; L is the N×N
diagonal matrix of the recording illuminant; η is the 3 × 1
vector of noise associated with the measurement. The sen-
sitivities of the matrix S may be obtained by the user with
commercially available instruments. The ideal colorimetric

value that is desired is given by

t = ATLr (2)

where A is the N × 3 matrix of the CIE color matching func-
tions. We will combine the illuminant with the sensitivity ma-
trix and the color matching function matrix and drop it from
subsequent equations.

A major problem with color estimation is that the sensi-
tivity matrix, S, defines a different 3-dimensional subspace of
the N-dimensional space, than does the matrix of CIE color
matching functions, A. While the camera manufacturers
strive to create filters that produce good color, they are never
within a linear transformation of A. For color estimation
applications, such as this one, it is important to use the raw
data from the camera. Using the camera processed sRGB
data from JPEG or TIFF files includes unknown processing
that adds error to the final colorimetric estimation.

Using the linear mean square error estimate, the transfor-
mation from the measurement to the estimate is given by

t̂ = Mc (3)

where
M = E{tcT }E{ccT }−1c. (4)

Using the fact that the noise for each channel is independent
of the reflectances, The estimate can be written

t̂ = ATRS(STRS + Λ)−1c. (5)

where R is the autocovariance of the reflectances and the Λ is
the autocovariance of the noise. This estimate is suitable for
estimation of the CIEXYZ values, from which the CIELAB
values can be obtained by the usual nonlinear transformation.

At this point, we need to discuss the noise matrix associ-
ated with the Poisson process. Since the red, green and blue
sensors are separate in the typical Bayer color filter array of
a camera, the noises in the channels are independent of each
other. The variance of a Poisson process is equal to the mean.
For an individual measurement, we can write the noise vector
as

η = diag(ST r)1/2ε. (6)

where we assume the number of photons is large enough to
use the Gaussian approximation, the 3× 1 vector ε is normal,
zero mean, unit variance and the square root of the diagonal
matrix is taken on each of the terms. For the estimator, we
need

Λ = E{diag(ST r)1/2εεT diag(ST r)1/2}. (7)

Taking the expected value of the independent Gaussian noise,
we have

Λ = E{diag(ST r)}. (8)

where the expectation is over the ensemble of reflectances.
Our interpretation of this term is very important.
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If we assume that the expectation is over all of the ensem-
ble, it is likely that the elements on the diagonal will be quite
similar. This is confirmed in the section of results. It is im-
portant to take into account the variation of the Poisson noise
over the three R,G,B channels. We will refer to the algorithm
using the global expected values as the Global (G) method.

We are trying to estimate the colorimetric vector t asso-
ciated with the measured vector c. Since we know the mea-
sured values, we can use that knowledge to estimate the rela-
tive variability of the noise in the different channels. Instead
of using the expected value, Λ̂ = E{diag(ST r)}, we can use
Λ̂ = diag(c). This has the advantage of using a better es-
timate for local areas of the image. For example, areas that
are basically yellow would have higher noise variances in the
red and green channels and lower variance in the blue chan-
nel. The inaccuracy caused by the measurement noise is much
less than that caused by averaging over the entire ensemble.

An additional gain in accuracy can be obtained, but at a
higher cost, by estimating the covariance matrix R locally,
rather than globally. This can be done by estimating R by
using only the sample reflectances, rk, that produce vectors
ST rk within a small distance of c. We will refer to the algo-
rithm using the local expected values of noise and covariance
as the Local (L) method.

To implement this adaptive method effectively for camera
data, we use a multidimensional look-up table (MLUT). The
values t at the grid points c of the table are determined us-
ing Eq.(5) with local statistics from the sample data. We use
trilinear interpolation within the MLUT. This enables us to
account for variations in the noise level as a function of signal
level as well as account for spectral correlation differences in
different parts of the camera RGB color space.

When creating the MLUT, the values at grid points in the
interior of the training samples are determined using sam-
ples that include the grid point in their convex hull. For this
case, we use from four to eight samples, depending on their
proximity. For the remaining grid points, we obtain the local
statistics from the 10 closest (in RGB Euclidean distance)
training samples. This number of samples was obtained
through empirical testing.

For colorimetric accuracy, we actually desire to minimize
the color error in a perceptually uniform color space such as
CIELAB or CIECAM02. Finding an optimal transformation
to map from camera RGB to CIELAB that minimizes ∆Eab

requires the use of numerical methods to find the parameters
of a nonlinear function. We will restrict ourselves to finding
the optimal matrix M of Eq. (3) that minimizes the perceptual
error. The problem can be posed as find the matrix N that
minimizes

||F(NST r)−F(AT r)||2 (9)

where F is the mapping from CIEXYZ to the perceptually
uniform color space. This problem can be posed to find a
global matrix that is optimal for the entire data set, or one can
construct an MLUT that accounts for local statistics of the

sample data, where a number of these problems are solved
for MLUT grid points. Since the global approach was seen to
give poor results, we concentrate on the local method. We use
the same local training samples as in the Local (L) method.
We refer to this method as Local Perceptual (LP).

The Local method could easily include the effects of
signal-dependent noise by using the noise covariance matrix
Λ̂ = diag(c). The numerical optimization methods do not
permit such easy inclusion. We could include the effects of
noise by generating samples c for each t that contained dif-
ferent realizations of the noise. While we are considering this
approach, at this time, the increase on the number of sample
points in the numerical algorithm makes the computational
time prohibitive. Thus, for this method, we use use an op-
timized MLUT based on noiseless data. We will see in the
following section how this is affected by measurement noise.

4. RESULTS

To compare the performance of the methods, we used the set
of over 2000 reflectance spectra obtained by [12] as a train-
ing data set. We used spectral samples from the 140 sample
X-Rite ColorChecker Digital SG Chart to test performance
[13]. We used the training set to compute the global and local
expected values for the Global (G) Local (L) and Local Per-
ceptual (LP) methods. The local methods were implemented
using a 17x17x17 MLUT. Across the entire data set, with sig-
nal dependent noise, the relative noise variances in the red,
green and blue channels as given by Equation 8 is found to
be diag[1.0, 0.87, 0.81]. This variance reflects the raw data.
The relative values depend on the density of the red, green
and blue filters of the Bayer array.

To compute the performance metrics, we trained the
methods using simulated data according to the model of
Eq.(1), where the noise is Poisson, the illuminant is D50,
and the camera spectral sensitivities are as shown in Fig. (1).
In the first case, the optimal transforms were found where
there was no noise assumed to be present in the system. This
provides an optimal benchmark with which to compare the
inclusion of the effects of noise in the estimation. To test
the degradation of the methods in the presence of noise, we
run the noiseless estimators with data contaminated by noise
at 25dB, 35dB and 45dB SNRs for the testing and train-
ing data. We used the average over the entire ensemble to
compute the SNR, noting that the SNR is necessarily signal
dependent. The results are shown in Table 1. The errors
for the noisy cases, were averaged over 100 realizations for
each reflectance vector. The error metrics in the table are the
Euclidean distance in CIEXYZ color space (∆XY Z,) the
average color difference ∆Eab in CIELAB space (shown as
∆E in the table to save space), as well as the maximum ∆Eab

value found across the tested noise realizations. We note that
all methods degrade similarly with decreasing SNR and there
is a major drop in performance between 35 and 25dB SNR.
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The Local Preceptive method performs best except at the
highest noise level.
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Fig. 1. Spectral sensitivities used for simulation

To determine the effects of considering the noise in the es-
timation algorithm, optimal transforms that minimized mean
squared error in CIEXYZ color space for average signal-
dependent noise levels of 25dB, 35dB and 45dB SNR were
determined. The results using these transforms with and
without noise for the testing and training data are provided
in Tables 2-4. The Local Perceptual method is not included
in these tables, since it was not modified to account for noisy
data.

Comparing the ∆ XYZ values between Table 1 and Tables
2-4, we see that knowledge about the signal dependent nature
of the Poisson noise can be useful in reducing the estimation
error, slightly at higher SNRs and more effectively at the low-
est SNR. The estimators that are designed to account for noise
perform better in the presence of noise those that are optimal
for the noise free case, especially for the ∆Emax, e.g., com-
pare 35, 25 dB. In particular, note the lower error for both the
Testing and Training data for the Local Method, which should
be expected. We see that the optimal ∆ XYZ estimators ac-
tually do not perform too poorly in terms of ∆Eab compared
to the optimal estimators that actually minimize ∆Eab.

An interesting observation is that the Local Perceptual
method outperforms the Local method at all but the lowest
SNR. This indicates that if the actual noise in the camera is
sufficiently small, ignoring it may not be very detrimental. It
also hints that developing the LP method to account for noise
would be helpful for low SNRs. Images that show the color
errors are found at ftp://ftp.eos.ncsu.edu/pub/eos/pub/spectra/.

5. CONCLUSIONS

We have demonstrated that accounting for Poisson noise is
helpful, especially at lower SNRs. Locally adaptive meth-
ods clearly outperform global methods, as expected. Further-
more, the MLUT approach appears to be viable for optimizing
locally adaptive algorithms.

The authors would like to thank Dietmar Wueller for pro-
viding access to his data base of spectral radiant measure-

ments.

SNR Data Set Method ∆XY Z ∆E ∆Emax

G 5.96 7.54 71.58
25dB Train L 5.99 7.56 52.50

LP 5.93 7.40 60.88
G 12.05 8.35 66.29

Test L 11.21 8.14 49.97
LP 11.92 8.43 64.68
G 1.12 2.72 37.29

35dB Train L 0.94 2.67 19.14
LP 0.93 2.47 20.25
G 4.33 4.80 35.80

Test L 3.03 4.18 24.10
LP 3.36 4.14 19.98
G 0.64 1.39 30.53

45dB Train L 0.43 1.45 11.09
LP 0.44 1.10 9.28
G 3.52 4.15 21.66

Test L 2.21 3.44 14.39
LP 2.54 3.40 15.54
G 0.58 1.05 26.82

No Train L 0.37 1.22 7.99
Noise LP 0.38 0.78 7.06

G 3.43 4.06 17.95
Test L 2.11 3.33 11.52

LP 2.46 3.29 13.08

Table 1: Optimal ∆ XYZ estimators (G and L) and optimal
∆E estimator (LP) for noise free case

SNR Data Set Method ∆XY Z ∆E ∆Emax

Train G 0.64 1.39 29.78
45dB Data L 0.43 1.44 11.00

Test G 3.51 4.17 20.19
Data L 2.21 3.48 13.53
Train G 0.58 1.05 26.97

No Data L 0.37 1.23 8.37
Noise Test G 3.43 4.07 17.55

Data L 2.11 3.37 11.42

Table 2: Optimal ∆ XYZ estimator for 45dB SNR

SNR Data Set Method ∆XY Z ∆E ∆Emax

Train G 1.12 2.69 39.35
35dB Data L 0.91 2.71 18.36

Test G 4.29 4.91 23.62
Data L 3.01 4.47 18.32
Train G 0.59 1.07 28.20

No Data L 0.40 1.56 9.06
Noise Test G 3.45 4.22 14.26

Data L 2.22 3.83 11.36

Table 3: Optimal ∆ XYZ estimator for 35dB SNR

SNR Data Set Method ∆XY Z ∆E ∆Emax

Train G 5.52 6.70 65.96
25dB Data L 5.38 6.77 56.19

Test G 11.87 9.17 53.24
Data L 10.47 8.49 34.96
Train G 1.08 2.52 36.18

No Data L 0.88 2.84 20.73
Noise Test G 5.03 6.53 22.93

Data L 3.85 6.09 25.63

Table 4: Optimal ∆ XYZ estimator for 25dB SNR
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