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ABSTRACT

Appearance model is of fundamental importance in a
tracking algorithm. In this paper, we propose a new track-
ing method based on a cooperative object appearance model
which incorporates both the discriminative and generative in-
formation. We represent the discriminative information with
graph embedding (GE). To represent the local object appear-
ance effectively, we divide the object and nearby background
into patches. As the discriminative conditions around the 4
object boundaries are different, we divide the patches into
4 groups and perform GE for each group. Markov Random
Filed (MRF) is designed to represent the generative informa-
tion. We propose a novel MRF based method which not only
considers the single patch’s appearance but also the appear-
ance relations between neighbor patches (not the relations
between neighbor patches’ states). The proposed cooperative
appearance model can represent the object appearance’s vari-
ation effectively and meanwhile discriminate the object from
background robustly. Experimental results on challenging
test sequences demonstrated the effectiveness of our method.

Index Terms— tracking, graph embedding, MRF

1. INTRODUCTION
Object tracking is a popular research field in computer vision.
To obtain promising tracking results, various appearance
models [1, 2, 3, 4] are adopted for object tracking. The ap-
pearance models can be roughly categorized into two groups:
generative and discriminative. Generative model represents
the foreground information effectively by representing the
samples’ distributions etc. Bradski [5] proposes a color
histogram-based method: Camshift (Continuously Adaptive
Mean-Shift), to track faces by utilizing the color statistics
information. Ross et al. [6] use incremental PCA (Princi-
pal Components Analysis) to represent object appearances’
distributions and obtain promising tracking results. Genera-
tive model represents the foreground’s variation effectively
and is less easily influenced by drastic background variation
than discriminative model. But when the background varies
not drastically, the discriminative model [7, 8] is generally
more robust and able to tackle the drift problem etc. more
effectively. Babenko et al. [9] perform tracking with online
Multiple Instance Learning (MIL). MIL remains both posi-
tive and negative samples and the discriminative information

between the two kinds of samples is utilized to determine
the object state. GE is an important learning method which
unifies different dimensionality reduction methods [10, 11].
Ma et al. [12] form multiple sample group pairs to obtain
accurate discrimination of GE for tracking. Kernel method
is also utilized in GE to solve nonlinear problems by some
researchers [13].

Our work is mostly related to [12], which also divides
object appearance and nearby background into patches and
performs GE for multiple sample groups. However, in [12]
the groups are formed based on classification of foreground
patches, while our method forms 4 groups around 4 object
boundaries respectively and performs GE for each group sep-
arately. Compared with [12], the new method represents the
local discrimination more accurately. Moreover, an MRF
based generative model is also introduced in our method.
Yang and Wu [14] construct the interest region based graph
and perform tracking based on MRF method. However, they
only consider the single node’s appearance, and do not con-
sider the appearance relations between different nodes. In
contrast, we consider both the two appearances in MRF and
obtain more effective representation of object appearances.

In this paper, the GE and MRF information are combined
together in the novel appearance model. The proposed co-
operative appearance model is deployed into the Bayesian
inference framework with a particle filter implementation to
perform tracking. By combining the generative information
and the discriminative information, the proposed appear-
ance model can represent the object appearance’s variation
effectively and meanwhile discriminate the object from back-
ground robustly. The flowchart of our method is shown in
Fig. 1, and the key contributions of our paper are as follows.

(1) We perform GE on 4 patch groups. In this way, we
are able to compute the local discriminative information
more accurately.

(2) We propose a novel MRF method which represents two
kinds of patch appearances effectively.

(3) We combine together GE and MRF, which are dis-
criminative model and generative model respectively,
to perform tracking.

The rest of our paper is organized as follows: Section 2
shows the particle filter we use in this paper. In Section 3,
we evaluate the particles with the multi-graph embedding. In
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Figure 1: Flowchart of our method. We perform tracking in the 
framework of particle filter. The particles are evaluated with GE 
and MRF. 

shows the particle filter we use in this paper. In Section 3, 
we evaluate the particles with the GE method. In Section 4, 
we propose a novel MRF method to evaluate the particles. 
Experimental results are shown in Section 5, and conclusion 
and future work are shown in Section 6. 

2. PARTICLE FILTER FRAMEWORK 

Particle filter represents the distributions of object’s sates 
effectively and is widely used in tracking [14, 15]. In this 
paper, we take particle filter as the framework for tracking. 
The particle filter is formed based on Bayesian formula. 
Given the observation sequence , the posterior prob-
ability density of the object state is defined as 

 (1) 

where  represents the object state at time t. We use the 
same definition of  and the same definition of state trans-
lation as in [11]. Each particle is warped to a normalized 
32×32 sub image. 

Detailed presentation of particle filter can be found in 
[14]. We select the particle with the largest likelihood 

 as the optimal particle. The particles are 
evaluated with GE and MRF. 

3. MULTIPLE GROUPS’ GRAPH EMBEDDING 

3.1. Graph embedding 

GE is a framework of dimensionality reduction and can 
combine PCA, LDA, etc. in the same framework [9, 10]. Let 

 be -dimension samples (here 
=64), and  be ’s class label.  is 

defined as the number of samples belonging to class c, and 
satisfies . To represent the local information 
of the object appearance accurately, we divide the object 
appearance and nearby background to 6×6 patches (Fig. 2). 
Each patch is a sample. Let  be a similarity matrix, the 
element  of which represents the similarity between 
samples  and . With the sample set 

 and , we construct an undirected 
graph . Let the element  of the diagonal 
matrix D be 

 ,                            (2) 

and Laplacian matrix L be 
.                                (3) 

Then the projection vectors is obtained by solving 
, (4) 

where , tr(v) represents the trace of the matrix v.
With , we are able to obtain the low dimensional repre-
sentations of the samples. 

We define  as the average of f.g. (foreground) sample i
of frame 0,…,t, and perform GE based on . As normally 
the b.g. (background) varied largely, we define b.g. sample 
j’s average  with only recent 5 frames, and when define 
samples’ variances in Section 3.2 we perform in the same 
way. The near samples (patches) often have larger similarity, 
and vice verse. To discriminate the f.g. and b.g. samples 
more accurately, we divide the 6×6 samples to 4 groups. 
Each group’s samples are around one of the 4 object 
boundaries and formed of 8 f.g. samples and 10 b.g. samples. 
We perform GE for each group separately. For group 

, let  be the mean of the f.g. samples of all 
frames, and let  is the mean of the b.g. samples of the 
recent 5 frames. Then similar to [11], we define 

 as the mean of all samples of group 
k. The sample vector is reduced to 1D subspace in our paper. 

Let  be a matrix whose columns are the f.g. and b.g. 
samples of group k and e be an all 1 vector. We define 

, where 
 defines the coefficient of each 

column of . Then the projection vector  is 
obtained by optimizing the objective function 

                     (5) 

With Lagrange method, the optimal  corresponds to the 
largest  in 

                        (6) 

In [11], function  is defined to revise sample x’s 
coefficient, i.e. , in computing . Here, we use the 
same method and define  in defining . The 
definition of the similarity matrix  is detailed in Section 
3.2. The likelihood corresponding to GE is defined as 

 (7) 

where  is the weight of group k.  is the mean of f.g. 
patches of group k in frame t. The proposed multiple groups’ 
GE method is summarized in Algorithm 1. 

3.2. Inter-class similarity 

Fig. 1. Flowchart of our method. We perform tracking in the
framework of particle filter. The particles are evaluated with
GE and MRF.

Section 4, we propose a novel MRF method to evaluate the
particles. Experimental results are presented in Section 5, and
conclusion and future work are shown in Section 6.

2. PARTICLE FILTER FRAMEWORK

Particle filter represents the distributions of object’s sates ef-
fectively and is widely used in tracking [15, 16]. In this pa-
per, we perform tracking using the Bayesian inference method
with a particle filter. Given observation sequence O1:t+1, the
posterior probability density of the object state is defined as

p(Xt+1|O1:t+1)∝p(Ot+1|Xt+1)

∫
p(Xt+1|Xt)p(Xt|O1:t)dXt. (1)

where Xt represents the object state at time t. We use the
same definition of Xt and the same definition of state trans-
lation as in [12]. Each particle is warped to a normalized
32× 32 sub image. Detailed presentation of particle filter can
be found in [15]. We select the particle with the largest like-
lihood πt = p(Ot|Xt) as the optimal particle. The particles
are evaluated with GE and MRF.

3. MULTIPLE GROUPS’ GRAPH EMBEDDING
3.1. Graph embedding
GE is a framework of dimensionality reduction and can
unify most dimensionality reduction algorithms (such as
PCA, LDA, etc.) in the same framework [10, 11]. Let
xi ∈ RD, i = 0, . . . , N − 1 be D-dimension samples (here
D=64), and yi ∈ {0, . . . , C − 1} be xi’s class label. nc is
defined as the number of samples belonging to class c, and
satisfies

∑C−1
c=0 nc = N . To represent the local information

of the object appearance accurately, we divide the object ap-
pearance and nearby background to 6× 6 patches (Fig. 2(a)).
Each patch is a sample. Let W be a similarity matrix, the ele-
ment w∗i,j of which represents the similarity between samples
xi and xj . With the sample set X = {x0, . . . , xN−1} and
W , we construct an undirected graph G = {X ,W}. Let the
element di,i of the diagonal matrix D̃ be

di,i =
∑

j 6=i
w∗i,j , (2)

and Laplacian matrix L be
L = D̃ −W. (3)

Then the projection vectors is obtained by solving
P ∗=arg

P
min

ZTBZ=I

∑
i,j

‖zi−zj‖2w∗i,j=arg min
ZTBZ=I

2 tr(ZTLZ),

(4)

where zi = PTxi, tr(v) represents the trace of the matrix v.
With P ∗, we are able to obtain the low dimensional represen-
tations of the samples.

We perform GE with mean foreground samples and mean
background samples. We define I

f

i,t as the mean of fore-
ground sample i of frame 0,. . . ,t. As normally the back-
ground varies largely, we define background sample j’s mean
I
b

j,t with only recent 5 frames, and when define samples’ vari-
ances in Section 3.2 we perform in the same way. The near
samples (patches) often have larger similarity, and vice verse.
To discriminate the foreground and background samples more
accurately, we divide the 6×6 samples into 4 groups. Each
group’s samples are around one of the 4 object boundaries
and formed of 8 foreground samples and 10 background sam-
ples. We perform GE for each group separately. For group
k=0,..., 3, let u(k)f be the mean of the foreground samples of

all frames, and let u(k)b be the mean of the background sam-
ples of the recent 5 frames. Then similar to [12], we define
u(k)=(u

(k)
f +u

(k)
b )/2 as the mean of all samples of group k.

The sample vector is reduced to 1D subspace in our paper.
Let X (k) be a matrix whose columns are the foreground

and background samples of group k and e be an all 1 vec-
tor. We define X (k)

0 = (X (k) − u(k)eT )B(k), where B(k) =
Diag(bk,0, ..., bk,17) defines the coefficient of each column of
X (k) − u(k)eT . Then the projection vector pk is obtained by
optimizing the objective function

J(pk) = pTkX
(k)
0 LX (k)T

0 pk. (5)

s.t. pTk pk = 1

With Lagrange method, the optimal pk corresponds to the
largest λk in

X (k)
0 LX (k)T

0 pk = λkpk. (6)

In [12], samples’ coefficients, i.e. B(k), are revised accord-
ing to the distances between samples and the discriminative
plane. Here, we use the same method to define B(k). The
definition of the similarity matrix Wk is detailed in Section
3.2. Let the mean of foreground patches of group k in frame t
be u(k)f,t . u(k)f,t normally is near to u(k)f and far from u

(k)
b . Let

Ek=
∣∣∣pTk (u(k)f,t − u

(k)
b

)
/D
∣∣∣−∣∣∣pTk (u(k)f,t − u

(k)
f

)
/D
∣∣∣ . (7)

Then the likelihood corresponding to GE is defined as

p(Oge
t |Xt) = exp

{∑3

k=0
w(k)Ek

}
, (8)

where w(k) is the weight of group k. The proposed multiple
groups’ GE method is summarized in Algorithm 1.

3.2. Inter-class similarity

We define the similarity matrix based on samples’ steadiness.
Let the variance of the foreground sample i=0,...,15 be σ2

f,i,
and background sample j=0,...,19 be σ2

b,j . We define σ2
f =

1900



1
16

∑
i σ

2
f,i and σ2

b = 1
20

∑
j σ

2
b,j . For group k, we define the

similarity matrix Wk =

[
0 W ′k

W ′k
T

0

]
, where W ′k is the sim-

ilarity matrix of samples belonging to foreground and back-
ground respectively. Normally we consider that more steady
samples (of smaller variances) are more confident in comput-
ing pk. Let αk,i and βk,j be the confidences of foreground
sample i and background sample j of group k respectively.
Then we define

αk,i = exp
(
−σ2

f,i′/σ
2
f

)
, (9)

βk,j = exp
(
−σ2

b,j′/σ
2
b

)
, (10)

and define
w
′(k)
i,j = αk,iβk,j , (11)

where w′(k)i,j is a component of W ′k , i′ and j′ are correspond-
ing patch indices of group k’s samples i and j.

Algorithm 1 The proposed multiple groups’ GE method

Input:Ifi,t, σ2
f,i,i = 0, . . . , 15; I

b

j,t, σ
2
b,j , i = 0, . . . , 19.

Steps: Form 4 groups of samples with the 36 samples. For
group k, do:
1. Compute Wk according to (11).
2. Compute pk.
1) Initialize B(k) with bk,i = 1, i = 0, . . . , 17.
2) Obtain pk according to (6).
3) Revise B(k) with the method in [12] and do 2) of Step
2 again, until reach the maximum iteration times (2 in this
paper).
Output: pk, k = 0, ..., 3.

4. MRF LIKELIHOOD FOR OBJECT PATCHES

The multiple groups’ GE method is able to discriminate the
foreground areas from the background areas effectively. In
another part, the object appearance (the generative informa-
tion) is also important to represent the object, especially when
background varies drastically. In this paper, we use MRF
to represent the generative information. As Fig.2 shows, the
MRF tracking problem can be defined as computing the hid-
den state given the known observation node and the links
in the graph. In particle filter, the candidate object states
are represented by a set of particles. Then the problem is
turned to compute the optimal state (particle) corresponding
to the largest likelihood given the observation model. Tra-
ditional MRF only considers the appearance Os

i about sin-
gle state node i, however our method considers both Os

i and
the appearance Ob

i representing the relations between neigh-
bor patches (with shared edge). Compared with traditional
method, our method is able to represent more appearance in-
formation.

We adopt Gaussian model to represent the two kinds of
object appearances in MRF. In frame t, for foreground patch
Ifi , we define Ifi ∼ N(I

f

i,t, σ
2
f,i). Let d′i,j be the Euclidean

              (8) 

where  is the weight of group k. The proposed multiple 
groups’ GE method is summarized in Algorithm 1. 

3.2. Inter-class similarity 

We define the similarity matrix based on samples’ steadiness. 
Let the variances of the f.g. samples i=0,…,15 as ,  and 
b.g. samples j=0,…,19 as . We define 
and . For group k, we define the similarity 

matrix , where  is the similarity matrix 

of two samples belonging to f.g. and b.g. respectively. 
Normally we consider that more steady samples (smaller 
variances) are more confident in computing . Let  and 

 be the confidences of f.g. sample i and b.g. sample j of 
group k respectively. Then we define 

,       (9) 
,       (10) 

and define 
                           (11) 

where  is a component of ,  are 
corresponding patch indices of group k’s samples i and j.

Algorithm 1. The proposed multiple groups’ GE method 

Input: , , ; , ,
Steps:  Form 4 groups of samples with the 36 samples. For 

group k, do: 
 1. Compute  according to (11). 
           2. Compute .

1)  Initialize  with , .
2)  Obtain  according to (6) 

  3)  Revise  with the method in [12] and do 2) of 
Step 2 again, until reach the maximum iteration 
times (2 in this paper). 

Output: 

4. MRF LIKELIHOOD FOR OBJECT PATCHES 

The multiple groups’ GE method is able to discriminate the 
f.g. areas from the b.g. areas effectively. In another part, the 
object appearance (the generative information) is also 
important to represent the object, especially when 
background varies drastically. In this paper, we use MRF to 
represent the generative information. As Fig.2 shows, the 
MRF tracking problem can be defined as computing the 
hidden state given the known observation node and the links 
in the graph. In particle filter, the candidate object states are 
represented by a set of particles. Then the problem is turned 
to compute the optimal state (particle) corresponding to the 
largest likelihood given the observation model. Traditional 

MRF only considers the appearance  about single state 
node i, however our method considers both  and the 
appearance  representing the relations between neighbor 
patches (with shared edge). Compared with traditional  
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Figure 2: Patches. (a) Grid. Red rectangle: object state. Pink 
rectangle: contain b.g. and f.g.. Yellow lines separate patches. The 
patches are divided to 4 groups. Each group contain 18 patches, 
which are below the green line, above the green line, left of the red 
line, right of the red line respectively. (b) Projection vectors of the 
4 groups. (c) The proposed MRF model. Each f.g. patch 
corresponds to one state node (red rectangle). Pink circle: 
appearance (observation) node about single state node. Green 
circle: appearance node about neighbor state nodes. 

method, our method is able to represent more appearance 
information. 

We adopt Gaussian model to represent the two kinds of 
object appearances in MRF. In frame t, for f.g. patch , we 
define ~ . Let  be the Euclidean distance 
between (the textures of) patch i and patch i’s neighbor j,
and let  and  be the mean and variance of  of all 

frames. We define ~ . According to the MRF 
model, patch i’s state node and the corresponding 
observation node form a clique. In addition, state nodes of 
patch i and patch j (patch i’s neighbor) and the appearance 
node corresponding to the two nodes also form a clique. 
Given the object state (particle), the cliques are independent 
of each other. Let  and  be the probability 
densities of  and  respectively, and let  be patch i’s 
weight. Then we obtain the likelihood 

. (12) 
We define and  

, where 
represents patch i’s neighbors. To make the values obtained 
with (12) not too small, the MRF likelihood is defined as 

             (13) 
The combined likelihood of  is defined as 

           (14) 
As <0,  is normalized to [0,1] in 
(14), i.e. define the minimum value of  among 
all the particles as 0, the maximum value as 1, all other 
particles’ values of  are projected into [0, 1] 
linearly.  is processed in the same way. 

We update the GE appearance model and the two MRF 
appearances models every 5 saved samples. For f.g. patch i,

Fig. 2. Object patches. (a) Grid. Red rectangle: object state.
Pink rectangle: contain background and foreground. Yellow
lines separate patches. The patches are divided into 4 groups.
Each group contain 18 patches, which are below the green
line, above the green line, left of the red line, right of the
red line respectively. (b) Projection vectors of the 4 groups.
(c) The proposed MRF model. Each foreground patch corre-
sponds to one state node (red rectangle). Pink circle: appear-
ance (observation) node about single state node. Green circle:
appearance node about neighbor state nodes.

distance between (the textures of) patch i and patch i’s neigh-
bor j, and let di,j and θ2i,j be the mean and variance about
d′i,j of all frames. We define d′i,j ∼ N(di,j , θ

2
i,j). Accord-

ing to the MRF model, patch i’s state node and the corre-
sponding observation node form a clique. In addition, state
nodes of patch i and patch j (patch i’s neighbor) and the ap-
pearance node corresponding to the two nodes also form a
clique. Given the object state (particle), the cliques are inde-
pendent of each other. Let ps(I

f
i ) and pb(d′i,j) be the proba-

bility densities of Ifi and d′i,j respectively, and let wi be patch
i’s weight. Then we obtain the likelihood

p0(O
mrf
t |Xt)=p(O

s
t , O

b
t |Xt)=p(O

s
t |Xt)p(O

b
t |Xt). (12)

We define p(Os
t |Xt) ∝

∏15
i=0 (ps(I

f
i ))

wi and p(Ob
t |Xt) ∝∏15

i,j=0,j∈neig(i) (pb(d
′
i,j))

wiwj , where neig(i) represents
patch i’s neighbors. To make the values obtained with (12)
not too small, the MRF likelihood is defined as

p(Omrf
t |Xt) = log(p0(O

mrf
t |Xt)). (13)

The combined likelihood of Xt is defined as

p(Ot|Xt) ∝ p(Oge
t |Xt)p(O

mrf
t |Xt). (14)

As p(Omrf
t |Xt)<0, p(Omrf

t |Xt) is normalized to [0,1] in
(14), i.e. define the minimum value of p(Omrf

t |Xt) among
all the particles as 0, the maximum value as 1, all other parti-
cles’ values of p(Omrf

t |Xt) are projected into [0, 1] linearly.
p(Oge

t |Xt) is processed in the same way. We update the GE
appearance model and the MRF appearance model every 5
saved samples. For foreground patch i, if ||Ifi − I

f

i,t||22 <
ασ2

f,i we consider patch i is not occluded, where α is a con-
stant. If the number of not occluded patches (0 ∼ 16) is
larger than a threshold, we store the current frame for sys-
tem updating, otherwise the current sample is dropped. Nor-
mally the occlusion conditions in successive frames are sim-
ilar. Thus, given foreground patch Ii,t−1 in frame t-1, we
define wi ∝ ps(Ii,t−1) and w(k) ∝

∑
i∈G(k) wi in frame t,

where G(k) represents group k’s samples.
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(a) Walking woman1 (at 0,26,61,104,160). Pose variation.

(b) Girl head (at 0,24,79,96,140). Pose variance, light variation.
GE1 GE2                          GE+MRF

Fig. 3. Comparison between GE1, GE2 and GE+MRF.

Table 1. Average errors of the 3 methods in Fig. 3.

GE1 GE2 GE+MRF

Fig. 3(a) 20.9 12.0 4.2
Fig. 3(b) 19.2 20.6 8.0

5. EXPERIMENTS

5.1. Experimental setting

We implemented our method in C++ and tested it on challeng-
ing videos. The experiments were conducted on a computer
with an Intel 2.53 GHz CPU and 2G RAM. For each exper-
iment of our method, we updated the system every 5 saved
samples, and used 150 particles per frame during tracking.
The object states in the first 5 frames were manually set. The
running time of our method was around 0.1 sec/frame. We
adopted the Euclidean distance between the object bounding
box’s center and the ground truth to represent the tracking er-
ror. Our method was performed on gray scale images. The
test videos were from [17] and [18].

5.2. Experimental performance

In Fig. 3, we tracked a walking woman and the head of a
girl, and compared our method (GE+MRF) with GE1 [12]
and GE2. Here, we defined GE2 as only using the new GE
method to evaluate particles. GE1, which considered the GE
information and the histogram contrast between object and
the nearby background, was able to discriminate the object
from the background effectively. However, as in Fig. 3(a)
when nearby background contained similar objects, GE1 was
influenced largely and failed to track the object robustly any
more. Similarly, GE2 also only used the discriminative infor-
mation provided by GE and was not able to obtain accurate
results. In contrast, the proposed MRF represented the lo-
cal information of object appearance and relations between
neighbor patches effectively. Thus, by combining GE and
MRF, our method tracked the object accurately. Also, as in
Fig. 3(b) when light varied largely, GE1 and GE2 were not
able to discriminate the foreground from the background ef-
fectively. However, by taking advantages of both GE and
MRF, our method was able to obtain more accurate results.
The average errors and the error maps of the 3 methods were
shown in Tab. 1 and Fig. 5 respectively.

Camshift LDA   MIL                VTD              GE+MRF

Fig. 4. Walking woman2 (at 0,114,141,186,200). Occlusion.
Comparison between our method and other 4 methods.

(a) Walking woman1 (at 0,26,61,104,160). Pose variation. 

(b) Girl head (at 0,24,79,96,140). Pose variance, light variation. 

Figure 3: Comparison between GE1, GE2 and GE+MRF. 

patches (0~16) is larger than a threshold, we store the cur-
rent frame for system updating, else drop the current frame. 
Normally the occlusion conditions in successive frames are 
similar. Thus, given f.g. patch  in frame t-1, we define 

 and  in frame t, where 
 represents group k’s samples. 

5. EXPERIMENTS 

5.1 Experiments Setting 

We tested our method on 3 videos. The experiments were 
done using VC++6.0 on a computer with CPU at 2.53 GHz, 
on the Win XP OS. For each experiment of our method, we 
updated the system every 5 saved samples, and used 150 
particles per frame during tracking. The running time of our 
method was around 0.1 sec/frame. We adopted the Euclid-
ean distance between the object bounding box’s center and 
the ground truth to represent the tracking error. The test vid-
eos were from EC Funded CAVIAR project/IST 200137540 
[16] and [17]. 

5.2 Performances 

In Fig. 3, we tracked a walking woman and the head of a girl, 
and compared our method (GE+MRF) with GE1 [11] and 
GE2. Here, we defined GE2 as only using the GE informa-
tion in (12). GE1, which considered the GE information and 
the histogram contrast between object and the nearby back-
ground, was able to discriminate the object from the back-
ground effectively. However, as in Fig. 3(a) when nearby 
background contained similar objects, GE1 was influenced 
largely and not able to track the object robustly any more. 
Similarly, GE2 also only used the discriminative information 
provided by GE and was not able to obtain accurate results. 
In contrast, the proposed MRF represented the local infor-
mation of object appearance and relations between neighbor 
patches effectively. Thus, by combining GE and MRF, our 
method (GE+MRF) tracked the object accurately. Also, as in 
Fig. 3(b) when light varied largely, GE1 and GE2 were not 
able to discriminate the foreground from the background 
effectively. By taking advantages of both GE and MRF, 
however, our method was able to obtain more accurate re-
sults. The average errors and the error maps of the 3 meth-
ods were shown  

Table 1. Average errors of the 3 methods in Figure 3. 
 GE1 GE2 GE+MRF

Fig. 3(a) 20.9 12.0 4.2 
Fig. 3(b) 19.2 20.6 8.0 

Figure 4: Walking woman2 (at 0,114,141,186,200). Occlusion. 
Comparison between our method and 4 other methods. 
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Figure 5: Error maps. 

in Tab. 1 and Fig. 5 respectively. 
   In Fig. 4, we tracked a woman walking with another 
woman and compared our method with 4 other methods: 
Camshift, LDA, MIL and VTD. The object bounding box 
contained large background areas. As a result, the color his-
togram in Camshift was influenced by background, which 
made Camshift lose tracking. When the woman was oc-
cluded severely by a walking man, the object appearance 
varied largely. LDA and MIL were influenced by the man’s 
appearance and not able to discriminate the foreground from 
the background effectively. Thus, the two methods failed to 
track the object robustly. The features adopted by VTD were 
also disturbed by the man’s appearance and thus VTD also 
lost tracking. However, by giving different patches different 
weights according to the patches’ distributions and by taking 
advantages of both discriminative and generative informa-
tion, our method was able to tackle the occlusion problem 
effectively. The error map of Fig. 4 was shown in Fig. 5, and 
the average errors of Camshift, LDA, MIL, VTD and 
GE+MRF were 18.5, 40.4, 28.4, 24.4 and 3.5 respectively. 

6. CONCLUSION AND FUTURE WORK 

This paper has proposed a new method which combines GE 
and MRF to perform tracking. We divided the patches to 4 
groups and performed GE for each group to obtain more 
accurate local discriminative information. We also proposed 
a new MRF method to obtain more effective object represen-
tation. The experiments demonstrated our method’s effec-
tiveness. In the future, we will continue the researches in 
combining the discriminative model and the generative 
model more effectively. 

7. REFERENCES 

Fig. 5. Error maps.

In Fig. 4, we tracked a woman walking with another
woman and compared our method with other 4 methods:
Camshift [5], LDA, MIL [9] and VTD [3]. The object bound-
ing box contained large background areas. As a result, the
color histogram in Camshift was influenced by background,
which made Camshift lose tracking. When the woman was
occluded severely by a walking man, the object appearance
varied largely. LDA and MIL were influenced by the man’s
appearance and not able to discriminate the foreground from
the background effectively. Thus, the two methods failed to
track the object robustly. The features adopted by VTD were
also disturbed by the man’s appearance and thus VTD also
lost tracking. However, by giving different patches different
weights according to the patches’ distributions and by taking
advantages of both discriminative and generative informa-
tion, our method was able to tackle the occlusion problem
effectively. The error map of Fig. 4 was shown in Fig. 5,
and the average errors of Camshift, LDA, MIL, VTD and
GE+MRF were 18.5, 40.4, 28.4, 24.4 and 3.5 respectively.

6. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new method which com-
bines GE and MRF to perform cooperative tracking. We
divided the patches into 4 groups and performed GE for each
group to obtain more accurate local discriminative informa-
tion. We also proposed a new MRF method to obtain more
effective object representation. The experiments demon-
strated our method’s effectiveness. In the future, we will con-
tinue the researches in combining the discriminative model
and the generative model more effectively. (This work is
partly supported by NSFC (Grant No. 60935002, 61100099,
61100147), the National 863 High-Tech R&D Program of
China (Grant No. 2012AA012504), the Natural Science
Foundation of Beijing (Grant No. 4121003), and The Project
Supported by Guangdong Natural Science Foundation (Grant
No. S2012020011081), NSF of Zhejiang Province (Grant
No. LY12F03016).)
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