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ABSTRACT 

This paper presents a no reference perceptual metric that 

quantifies the degree of regularity in textures. The metric is 

based on the probability of visual attention at each pixel of 

the texture image, similarity of visual attention of the 

textural primitives and the periodic spatial distribution of 

foveated fixation regions throughout the image. It is shown 

through subjective testing that the proposed metric has a 

strong correlation with the Mean Opinion Score for the 

regularity of textures. 

Index Terms— Visual Attention, Texture Analysis, 

Randomness, Image Quality Assessment 

 

1. INTRODUCTION 

Textures on natural and man-made objects have served as an 

important visual cue for the recognition, segmentation and 

classification of these objects. The analysis of the inherent 

properties of textures plays a significant role in many 

applications such as content-based image retrieval [1], 

defect detection on fabrics [2] and texture synthesis [3]. A 

texture can be characterized using a collection of image 

primitives [4]. These primitives can exhibit varying degrees 

of regularity in their spatial placements, size, shape, tonal 

properties, directionality and granularity as shown in       

Fig. 1. The overall perceptual regularity of textures is due to 

the accumulated effect of all these factors and this paper 

aims to measure the degree of this regularity. The 

motivation for this metric comes from its compelling 

potential impact on unsupervised image processing 

applications. The proposed metric can hasten the process of 

texture classification and image retrieval applications. In 

texture synthesis, it can guide the application of the 

appropriate synthesis method on a “seed” texture [3].  In 

texture analysis, it can aid in applying the correct models. 

Many approaches have been proposed in the past to 

quantify the regularity or randomness of textures. A 

measure of spatial periodicity for regular textures, derived 

from the Gray Level Co-occurrence Matrix (GLCM) is 

proposed in [4].  A faster version of this approach that acts 

on a Binary Co-occurrence Matrix is proposed in [5]. A 2D 

Wold decomposition of homogeneous random fields is 

employed in [6] to extract the periodic, random and 

directional components of textures. In [7], the spatial 

regularities in the pixel intensities and the placement of the  
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Fig. 1:Examples of irregularity in textures due to                 

(i) placement (ii)size, shape or color(iii) directionality and 

(iv) fine-granularity of primitives 

primitives along a direction, together quantify the 

directional regularity. The overall regularity metric is taken 

as the maximum of the directional regularities. In [8], the 

randomness of the observed texture is represented by a 

Kolmogrov Stochasticity parameter measured between the 

empirical and a modeled distribution of wavelet packet 

coefficients. 
None of the above mentioned approaches take human 

perception into account but directly operate on the pixel 

domain [5] or on the spectral domains [9]. When we look at 

textures, we don’t concentrate on individual pixels but at 

visually salient regions. This is ignored by the pixel-based 

periodicity approaches. Some of the approaches like [2], 

assume that they act on a patterned regular texture and are 

thus not suitable for stochastic textures. Perceptual quality 

metrics for textures proposed in the past like STSIM[10], 

are full reference metrics used to assess distortions in a 

texture with respect to a reference, and cannot quantify the 

structure in a newly observed texture without the presence 

of a reference. Furthermore, they cannot assess the degree of 

regularity in a texture image. A rarity-based VA model for 

texture description is suggested in [11]. The method 

classifies the regions of an image into regular and irregular 

textures by considering irregular texture regions to be highly 

salient relative to regular texture regions. However, this 

assumption does not generally hold since regular textures 

can also be highly salient (Table 1).  
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Table 1. Visual saliency for regular and irregular textures. 
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In this paper, we propose that the perceived regularity 

in a texture is manifested in the spatial distribution of 

visually salient points over it. We also propose a texture-  

regularity metric based on the characteristics of the visual 

saliency map.  

This paper is organized as follows. The proposed 

texture regularity metric is described in Section 2. 

Performance results are presented in Section 3 followed by a 

conclusion in Section 4. 

2. PROPOSED METHOD 

When viewing a visual scene, the human visual system 

fixates on salient points in that scene. This visual attention 

can be captured through a Visual Saliency Map (VSM) 

whose values directly quantify the extent to which each 

region grabs the human attention. The saliency map is 

normalized to 1 and shown as an image in which the 

brightest pixels (close to 1) correspond to highest attention 

and the darkest pixels (close to 0) correspond to lowest 

attention. Table 1 shows sample regular and irregular 

textures (row 1) and their corresponding VSM maps (row 

2). The red crosses indicate visually significant large peaks 

while the green crosses correspond to smaller less 

significant local peaks. As illustrated in Table 1 (rows 1 and 

2), the VSM characteristics differ between regular and 

irregular textures. This fact can be exploited in quantifying 

the degree of regularity of a texture image. Table 1 also 

shows the normalized histograms of the VSMs. Each 

normalized histogram, P(VA), corresponds to the probability 

of an attention  level  VA  (VSM  value)  occurring in the  

Fig.2. Block diagram of the proposed metric. 

associated texture image. An attention level VA <= 0.5, 

corresponds to a low attentive area.  

Fig 2 shows a flowchart of the proposed texture 

regularity metric computation algorithm. The proposed 

algorithm makes use of the VSM characteristics and 

distribution in order to assess the degree of regularity in 

texture images. In our implementation, the VSM is 

generated using the GBVS model[12]. More details about 

each of the stages are given in Sections 2.1 to 2.3.  

2.1 Score for Textural Attention

Let VA_Thresh denote the visual attention threshold. A 

location is considered to be highly salient if its associated 

attention level VA>=VA_Thresh. The last local peak of the 

VSM histogram, lpeak is used to determine the visual 

attention threshold, VA_Thresh as follows: 
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All pixels having an attention level greater than VA_Thresh

are very much noticeable and give a pattern and structure to 

the texture. This is quantified as the score for textural 

attention which is given by: 

#
$

"
1

VA_ThreshVA

attention P(VA)  S                        (2) 

where P(VA) is the probability of visual attention obtained 

from the normalized histogram of the VSM. In the case of a 

regular texture, the last peak of the histogram tends to fall 

between 0.5 and 0.65 and the total probability of visual 

attention beyond the VA_Thresh (corresponding to the 

proportion of image occupied by the primitives) is relatively 

large as compared to an irregular texture. In the case of non-
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regular textures, the last peak tend to occur at a much 

smaller value below 0.5, and the total probability above 

VA_Thresh tend to be relatively small. 

2.2. Similarity Score for textural primitives 

Within each primitive, visual attention is largest at the 

center and decreases from the center to the periphery. The 

high VA values in the tail of the histogram (following the 

last peak lpeak) correspond to the central primitive pixels 

which are few in number. The lpeak  location value 

corresponds to the VA for the peripheral primitive pixels 

which are larger in number. When the texture primitives are 

identical in size, shape and color, the central and peripheral 

pixels of one primitive would have, respectively, the same 

visual attention levels as the corresponding pixels of another 

primitive. This gives a sharp decay of the histogram beyond 

the last peak. In the case of textures with irregularly shaped, 

sized or colored primitives, the visual attention values at the 

peripheral regions of the primitives are not identical to each 

other. Hence, the last peak of the histogram is relatively 

smaller and there is a spread of higher VA values. This leads 

to a gradual decay of the histogram. The decay rate of the 

histogram is found by fitting an exponential function to the 

tail of the histogram as follows: 
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The decay parameter bcontributes to the quantification of 

the texture regularity and is used in computing the similarity 

score as follows: 

)4(max_/)max,min( b_bbS
similarity

*

where max_b is used to saturate the decay to a maximum 

value and to normalize the similarity score to the range [0,1] 

2.3. Spatial Distribution Score for Textural Primitives 

The above mentioned scores quantify the proportion of 

visually attentive pixels and the similarity between the 

primitives as measures of regularity. But even when these 

two scores are high, regularity falls when the primitives are 

not spatially distributed in a periodic or quasi-periodic 

manner and do not span the entire image. A spatial 

distribution score is attributed to the texture for this purpose. 

The peaks in the VSM, which act as local maxima, are first 

located. Then, for each peak pi, the distance of its closest  

neighboring peak, cdisti, is found:

jiandNi,j1where),jpimin(picdist ,-*-*)* (5) 

The standard deviation of the computed distance 

values,cdisti, is higher for textures with irregularly placed 

primitives and lower for regularly placed primitives. The 

standard deviation of cdisti, std(cdisti),is used to compute 

the placement regularity score as follows:  
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where max_std is used to saturate std(cdisti) to a maximum 

value and to normalize the placement regularity score to the 

range [0,1].  

In addition, a score characterizing the spread of the 

primitives is computed as follows. The located VSM peaks 

act as foveation centers and a foveated region, approximated 

by a block of size L×L (L  65 for our viewing set-up), is 

assigned around each peak. The union of all these regions 

gives a measure of the spread of the texture primitives. The 

higher the spread, the higher is the perceived regularity. A 

texture spread score is thus computed as follows:  
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In (8), (xi,yi) is the location of the peak pi  and r(m.n) is 

given by: 
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where L is the width of a foveated region.  

The spatial distribution score is then computed as 

follows: 

spreadtextureregularityplacementondistributispatial
SSS
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.*  (10) 

The overall texture regularity measure is obtained as 

follows: 

)11(
321 ..
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SSSS *     

In (11), the values � 1 = 1, � 2 = 2 and � 3 = 1 were used. 

3. SIMULATION RESULTS 

A subjective testing was conducted on 21 textures from two 

databases, namely, MIT Vistex database [14] and Graph-Cut 

texture synthesis database[15]. Ten subjects with normal to 

corrected vision participated in the subjective tests. The 

textures, equally distributed amongst the broad classes of 

regular, irregular or hybrid textures, were randomly 

displayed one after another to each subject. The subjects 

were asked to score the overall regularity for each observed 

texture, using a three-scale score with 1 corresponding to 

lowest and 3 to highest. In addition to observing the overall 

texture regularity, subjects were asked to observe and score  

using a three-scale score (1 being the lowest and 3 the 

highest) five visual properties of the texture primitives 

before indicating their final overall regularity score for each 

displayed texture image, namely (i) ease in locating the 

primitive, (ii) regularity in the placement of the primitives, 

(iii) regularity in size, shape and color of the primitives, (iv) 

regularity in the direction of the primitives, and (v) average 
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Table 2. Mean Opinion Score (MOS) and the proposed 

metric for textures in the decreasing order of regularity. 

Texture Image 

MOS 

Average

Property 

MOS 

Overall 

Regularity 

Texture 

Regularity 

Metric 

(100x)

Tile.ppm 2.825 3.000 8.4605 

marbles.jpg 2.813 3.000 8.3111 

keyboard.jpg 2.788 2.813 3.1157 

maille.jpg 2.713 2.813 4.2183 

gecko.jpg 2.675 2.875 2.4281 

horses.jpg 2.638 2.688 1.5890 

puzzlepieces.jpg 2.525 2.688 1.7515 

cream.jpg 2.425 2.875 0.8421 

bricks.jpg 2.425 2.625 0.9894 

red-peppers.jpg 2.175 2.313 2.6422 

tulips.jpg 2.013 2.000 1.3118 

freshblueberries.

j
1.925 2.000 0.7251 

tomatoes.jpg 1.850 2.125 1.1574 

lobelia.jpg 1.775 2.000 0.4717 

Flowers.ppm 1.750 1.938 0.4089 

rice.jpg 1.713 1.875 0.2307 

Clouds.ppm 1.375 1.125 0.1108 

long_island.jpg 1.325 1.188 0.0427 

northbeach.jpg 1.275 1.313 0.0382 

Misc.ppm 1.175 1.313 0.3599 

Water.ppm 1.163 1.250 0.0864 

size of the primitives. The primitives in a regular texture are 

very easy to find compared to those in an irregular texture. 

Also, small sized primitives are perceived as less regular 

than larger ones [4]. An average of the five property scores 

gives the “Average Property” score for each subject. The 

Overall Regularity and the Average Property scores were 

separately averaged over all 10 subjects to generate the 

respective Mean Opinion Scores (MOS Property Regularity 

and MOS Overall Regularity) as shown in Table 2. The 

proposed regularity metric lies in the ranges of 0 to 1. To 

represent very small decimals the metric is scaled by a 

factor of 100 and shown in Table 2. To account for extreme 

values at the ends of the testing range (very high and very 

low regularity), each metric value Mi is transformed into a 

predicted MOS (MOSpi) value using a four-parameter 

logistic function as suggested by VQEG[13]: 
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Table 3. Correlation of the proposed metric with MOS. 

Texture

Set 

MOS PLCC SROCC RMSE MAE 

All 21 

Textures 

Overall

Regularity 

90.63 89.64 0.269 0.207 

Average

Property 

92.15 93.86 0.222 0.167 

Without  

Outliers  

Overall

Regularity 

95.54 96.08 0.194 0.155 

Average

Property 

96.05 96.28 0.168 0.127 

The performance of the proposed Texture Regularity Metric 

to quantify the perceived regularity is shown through the 

Pearson Linear Correlation Coefficient (PLCC) and the 

Spearman Rank Order Correlation Coefficient (SROCC) 

between MOSp and MOS. As shown in Table 3, for the 

original set of 21 textures, the metric results in  a PLCC of 

90.6 % and SROCC of 89.6% for the Overall Regularity 

MOS. The PLCC and SROCC values are 92.1% and 93.8%, 

respectively, when correlating the metric with the Average 

Property MOS. Table 3 also shows the Root Mean Square  

Error (RMSE) and Mean Absolute Error (MAE) of the 

metric in predicting the MOS. As seen in Table 2, bricks, 

cream and red-peppers are the outliers. The metric failed to 

predict the regularity on tiled textures like bricks and cream 

due to the inability  of the employed visual attention model 

(GBVS [12]) to generate the appropriate saliency map for 

these textures. In the case of red-peppers, the high similarity 

in tonal properties between the primitives caused a high 

value for the metric. But the MOS scores were medium for 

this case due to irregularities in shape of primitives. As 

shown in Table 3, when eliminating these outliers, the 

PLCC and SROCC with the Overall Regularity MOS 

increases to 95.5% and 96.1%, respectively, for the 

remaining 18 textures.  

4. CONCLUSION 

A novel no-reference texture regularity metric based on the 

visual attention of textures, is proposed in this paper. The 

proposed metric is based on characteristics that are extracted 

from the visual saliency map and its distribution in order to 

predict the regularity of textures as perceived by human 

subjects. The regularity metric can be further improved by 

applying better visual attention models that more closely 

predict the true human visual saliency on textures. 
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