
Comparative Image Quality Assessment using Free
Energy Minimization

Guangtao Zhai∗† and Andre Kaup†
∗Institute of Image Communication and Information Processing,Shanghai Jiao Tong University, Shanghai, 200240, China

Email:zhaiguangtao@gmail.com
†Chair of Multimedia Communications and Signal Processing, Friedrich-Alexander-University, 91058 Erlangen, Germany

Email: kaup@lnt.de

Abstract—It is a straightforward task for human observers to
judge the relative quality of two visual signals of the same content,
but subject to different type/level of distortions. However, this
comparative image quality assessment (C-IQA) problem remains
a difficult challenge for the current research of image quality
assessment (IQA). In this paper, we propose a C-IQA approach
to predict the relative perceptual quality of a pair of images
that are possibly subject to different artifact types/levels. The C-
IQA algorithm is designed to emulate the process of comparing
the relative quality of two visual stimuli as performed by the
human visual system (HVS) within the framework of free energy
minimization. The brain’s internal generative models initialized
on the inputs are used to explain the two images. And their
relative quality can then be determined through comparing the
free energy level of this model-data fitting process. In the existing
work of IQA, the full-reference (FR) and reduced-reference (RR)
methods need the prior knowledge of the original images while
the no-reference (NR) algorithms usually work with a single input
image. The C-IQA approach is inherently different from those
existing methods in that it takes as input an image pair and
predicts their relative quality without using any knowledge about
the original image. A computationally efficient solution to the
proposed C-IQA scheme based on a linear autoregressive image
model is also introduced. Experimental results show that the
proposed method achieves about 98% accuracy in line with the
subjective ratings when applied on over 300,000 image pairs
sampled from the LIVE database, outperforming the FR metrics
such as PSNR, SSIM, and some of the most advanced NR IQA
algorithms.

I. INTRODUCTION

It is our daily experience to justify the comparative quality
of two visual signals, e.g. choosing from cameras, cable
companies or TV sets that provide better imaging, transmission
or representation qualities for the visual signals. During those
comparative image quality assessment (C-IQA) tasks, despite
of the fact that we usually have no access to the original
pristine image, it is fairly easy for our human visual system
(HVS) to tell the relative qualities. In the current research
of image quality assessment (IQA), image quality metrics are
usually classified into full-reference (FR), reduced-reference
(RR) and no-reference (NR) approaches depending on the
accessibility to the original reference points [1]. Clearly, the
C-IQA problem does not fall into the FR and RR categories
because there is no prior knowledge about the original image.
Yet, the C-IQA problem is also not the same as the currently
practices of NR-IQA.

Existing NR-IQA methods can be classified into two cat-
egories according to whether the image distortion process or
the image formation process is modeled. Most of the early
attempts on NR-IQA assume certain types of distortion, e.g.
image blur [2] , blockiness [3], [4] or ringing artifact [5], and
therefore convert the problem of IQA to distortion measures.
Recent works along this line of research include [6], [7],
[8], However, by design, such methods only work well for
specific types of images. Hence, difficulty arises for this type
of methods to assess the relative quality of two images subject
to different distortions. Although multiple distortion measures
can work in tandem towards a holistic quality measure [9],
accuracy of this heuristic solution is usually low due to the
lack of a unified framework and because of the fact that the
distortion measures can interfere with each other. Another
emerging type of NR-IQA algorithms is based on the natural
scene statistics (NSS) model [10], [11], [12]. The underlying
reasoning is that our visual system has evolved in the natural
environment for millions of years and is therefore well adapted
to natural scenes. A prior statistical model derived from a
large set of natural images is therefore expected to capture the
“naturalness” of images. So by measuring its departure from
the ideal “naturalness”, we can predict the perceptual quality
loss of a distorted image.

For the problem of C-IQA, the distortion detection type of
NR-IQA algorithm is clearly not applicable because of the
fact those two visual signals may undergo difference type of
distortions. The NSS type of holistic NR-IQA algorithm is
applicable to the problem but it always tries to quantify the
qualities of the two images independently. This is in contrast
to the working mechanism of the HVS to accomplish the task
of assessing the relative quality of a pair of images. According
to our experience, when being asked to compare the relative
quality of two images, we usually alternate our focus within
and between both images, making and validating assumptions,
before coming to the final conclusion. In other words, we use
information from both input images to fulfill the C-IQA task.
As an example, try to quantify the relative quality of the two
distorted images in Fig. 1 and verify the existence of cross-
reference between the images. On the other hand, however,
NSS type of holistic NR-IQA algorithms work with a single
image input and generate an “absolute” quality prediction. To
compare the relative quality of two images, we need to run the
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Fig. 1: An example to show the inherent difference between C-IQA and FR-/NR-IQA. From left to right: blurred image, the
original image, and image with salt & pepper noise. Please cover the middle reference image to verify that the HVS extracts
information from both distorted images to quantify their relative visual quality. In this example, if we define the left image as I1
and the right image as I2, we have estimates of the free energy levels FI1→I1(θ) = 1.13, FI1→I2(θ) = 7.85, FI2→I2(θ) = 8.01
and FI2→I1(θ) = 4.39. Since FI1→I2(θ) < FI2→I2(θ) and FI1→I1(θ) < FI2→I1(θ), so image I1 (left) is believed to have
better visual quality than image I2 (right).

NR algorithm twice and match the scores. During this process,
the quality of an image is determined without whatsoever the
information from the other. The quality predicton of NR-IQA
is solely based on an appearance model (e.g. the NSS model).
Clearly, this observation suggests a significant departure of
existing NR-IQA algorithms from the way that the HVS works
when solving the C-IQA problem.

In this paper, we propose a C-IQA algorithm to simulate the
way how the HVS judges the relative quality between a pair of
images. The C-IQA problem is modeled as the estimation and
comparison of the posterior probability of one image given the
other. We resort to a free-energy theory [13] induced structural
model for images. The internal generative models optimized
on the inputs are used to explain the image itself as well as its
counterpart (model transition). The discrepancies between one
image and its internal-model and transition-model explainable
parts are computed and compared. And the image that can
better explain the other one is believed to have superior quality
because the underlying model has higher description power.
In will be shown in the paper that this free energy estimation
and comparison based C-IQA algorithm achieves a remarkable
98% accuracy rate (i.e. conformance to the subjective ratings)
when quantifying the relative quality of over 300,000 image
pairs sampled from the LIVE database [14], outperforming
FR-IQA method PSNR, SSIM and some state of the art NSS
based NR-IQA algorithms.

The remainder of the paper is organized as follows: Section
II outlines the C-IQA framework. Section III introduces the
algorithm in detail. Experimental results and comparative
studies are performed in Section IV. Concluding remarks are
given in Section V.

II. COMPARATIVE IMAGE QUALITY ASSESSMENT VIA
FREE ENERGY MINIMIZATION

A. General Formulation
Given a pair of images (I1, I2), we will first focus on the

cognitive process of quantifying the visual quality of I1. The
Bayesian brain theory [15] and the free energy principle [13]
suggest that the cognitive process is governed by an internal
generative model G in the brain. Given a scene or image I1,
the model G adapts itself through varying a parameter vector
θ. Then the “surprise” of observing the image I1 using the
internal model G, is defined by integrating the joint distribution
P (I1,θ|G) over the parameter space

− logP (I1|G) = − log

∫
P (I1,θ|G)dθ. (1)

Note that conditional entropy of the observation I1 given the
model G can be computed as average of surprise H(I1|G) =∫
−P (I1|G) logP (I1|G) as a measure of “randomness” of the

images. As in ensemble learning [16] and variational Bayesian
estimation [17], we use an auxiliary posterior distribution
Q(θ|I1,G) to calculate the surprise of I1 in (1). Note that
to fully utilize the information from the data, this auxiliary
posterior can also be drawn from I2 to get Q(θ|I2,G). Since
the behavior of the model can be characterized by the param-
eter θ, from now on, we drop the latent model assumption G
in our analysis for simplicity.

By letting the auxiliary terms Q(θ|I1) and Q(θ|I2) into (1)
we have

− logP (I1) = − log

∫
Q(θ|I1)

P (I1,θ)

Q(θ|I1)
dθ. (2)

− logP (I2) = − log

∫
Q(θ|I2)

P (I1,θ)

Q(θ|I2)
dθ. (3)

1885



Recall that for the C-IQA problem, we want to evaluate the
perceptual quality of I1 using the model derived from I1 and
I2. The free energy of the C-IQA system F = −P (I) is
defined as

FI1→I1(θ) = −
∫

Q(θ|I1) log
P (I1,θ)

Q(θ|I1)
dθ. (4)

FI2→I1(θ) = −
∫

Q(θ|I2) log
P (I1,θ)

Q(θ|I2)
dθ. (5)

where the subscript I1 → I1 and I2 → I1 indicates I1 and I2
are respectively used to infer the quality of I1.

By noticing that P (I1,θ) = P (I1|θ)P (θ), we can write (4)
into

FI1→I1(θ) =

∫
Q(θ|I1) log

Q(θ|I1)
P (I1|θ)P (θ)

dθ (6)

= KL(Q(θ|I1)||P (θ)) + EQ[− logP (I1|θ)].

Similarly, (5) can also be written as

FI2→I1(θ) = KL(Q(θ|I2)||P (θ)) + EQ[− logP (I1|θ)]. (7)

Here the terms KL(Q(θ|I1)||P (θ)) and KL(Q(θ|I2)||P (θ))
measure the distance between the recognition densities
and the true prior of the model parameters. The term
EQ[− logP (I1|θ)] is the averaged entropy of predicting I1
over the approximating posteriors Q(θ|I1) and Q(θ|I2).

We can now formulate the dual-process of inferring the
quality of I2 with the internal model initialized with I2 and
I1 as

FI2→I2(θ) = KL(Q(θ|I2)||P (θ)) + EQ[− logP (I2|θ)]. (8)
FI1→I2(θ) = KL(Q(θ|I1)||P (θ)) + EQ[− logP (I2|θ)]. (9)

The relative quality of I1 and I2 can be assessed
through comparing the self free energy terms FI1→I1(θ) and
FI2→I2(θ) and the cross free energy terms FI1→I2(θ) and
FI2→I1(θ). First, if the free energy level can be reduced
using another observation, i.e. the cross free energy is lower
than the self free energy level: FI2→I2(θ) > FI1→I2(θ)
or FI1→I1(θ) > FI2→I1(θ) the observations I1 and I2 are
considered respectively to have better visual quality. In the
condition that the cross free energy levels are both higher
than the self free energy levels, i.e. FI1→I1(θ) < FI2→I1(θ)
or FI2→I2(θ) < FI1→I2(θ), we further compare the cross
free energy. The image that explains the other one better is
considered to have better quality. Under the circumstances
that the cross free energy levels are both lower than the
self free energy levels, i.e. FI2→I2(θ) > FI1→I2(θ) and
FI1→I1(θ) > FI2→I1(θ), we also compare the cross free
energy terms FI1→I2(θ) and FI2→I1(θ), and again the image
that can better explain the other one is considered to have
better quality.

B. Practical Calculation of the Free Energy

For operational amenability we can assume the generative
model G to be a 2D linear autoregressive (AR) model for its
high description capability for natural images [18] and wide

acceptance in image processing algorithms [19], [20], [21].
The AR model is defined as

xi = X k(xi)α+ ei (10)

where xi is a pixel at location i, X k(xn) defines the k member
neighborhood vector of xi and α = (a1, a2, . . . , ak)

T defines
the model parameter. Towards a pragmatic image quality
metric, in this research we opt for straightforward solution
using a piecewise AR model formulation [18]. Indeed, research
shows that the free energy equals the total description length
of the image I under the large sample limit [22] so the model
can be estimated via minimizing the total descriptive length
[23] or using the Bayesian information criterion (BIC) [24] as

α̂ = argmin
α

(
− logP (I|α) +

k

2
logN

)
(11)

where N is the data sample size. To further reduce the
complexity, we choose a fixed model order and training set
size, and thus change the complicated model comparison
process into residual minimization.

Given the k-th order piecewise AR model, for a pixel xi,
we can write the linear equations as

xi = X k(xi)α+ ei, xi ∈ N (xi) (12)

with X k(xi) denoting the model support and N (xi) the
training set in a neighborhood of xi. To estimate α, the linear
system can be written in matrix form as

α̂ = argmin
α
‖x−Xα‖2 (13)

with x = (x1, x2, . . . , xN )T and X(i, :) = X k(xi). The linear
system can be solved easily as α =

(
XTX

)−1
XTx.

With θ̂, we can then get the estimation error of a local pixel
as

êi = xi − x̂i = xi −X k(xi)α̂. (14)

For the input image I , the point-wise error ei can then be
pooled to get an error map E(I) and entropy of the errors can
also be computed as H(E) =

∑
−P (e) logP (e) with P (e)

being the probability distribution of the errors.
In our implementation, an 8-th order AR model is trained

locally in a local 7 × 7 neighborhood. The two pseudo-
inverse of the 48 × 8 matrix can actually be solved more
efficiently using Gaussian eliminations. The algorithm written
in optimized C code can operate in almost real time (i.e. 30
frames per second) for image input at VGA resolution.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS

We have tested the proposed free energy based C-IQA
algorithm on the most widely used LIVE database [14] which
consisted of 982 test images: 29 original reference images
subject to five kinds of distortions, namely JPEG compression,
JPEG2000 compression, Gaussian noise, Gaussian blur and
fast fading. We first sampled all the possible image pairs
from the database with the constraint that they have the same

1886



Fig. 2: Prediction accuracy of the proposed C-IQA algorithm and other test algorithms for the 29 original images in the LIVE
database. The horizontal axis is the image indexes. The vertical axis is the prediction accuracy.

TABLE I: Comparisons of Prediction Accuracy of the Proposed C-IQA and some FR- and NR-IQA Algorithms

C-IQA NFEDM[25] PSNR SSIM[26] BIQI[27] DIIVINE[28] BLIINDS2[29] BRISQUE[30]

Minimum 85.7% 28.57% 61.9% 61.9% 71.4% 73.3% 76.2% 66.7%

Mean 98.11% 77.98% 94.6% 95.0% 92.9% 90.4% 94.8% 95.9%

reference image. The total number of the image pairs used in
our test is 304,800.

The prediction result of the proposed C-IQA algorithm for
each of the original 29 reference images in the LIVE database
for the proposed C-IQA algorithm and some competing algo-
rithms are shown in Fig. 2. We have tested the free energy
based NR IQA algorithm NFEDM [25] and some recent NSS
based NR IQA metrics: BIQI [27], DIIVINE [28], BLIINDS2
[29] and BRISQUE [30]. Note that those NSS training based
algorithms were trained on the entire LIVE database. For the
sake of completeness, we have also included the benchmark
FR IQA metrics PSNR and SSIM [26]. It can be seen that the
proposed C-IQA algorithm achieved the highest accuracy for
almost all of the test images, outperforming the FR methods
and those NR methods optimized for the LIVE database.

The overall prediction accuracy rates of the tested algo-
rithms are summarized in Table I. It can be seen that the
Proposed C-IQA algorithm achieves the highest rate of 98.1%.
The BRISQUE [30] method has the second best result of
95.9%. And the results of PSNR, SSIM [26] and BLIINDS2
[29] are all around 95% while the results of BIQI [27],
DIIVINE [28] are 92.9% and 90.4% respectively. Under-
standably, self free energy based NFEDM [25] has the worst
performance. The lowest performance under the test scenarios
is also shown in Table I. The Proposed C-IQA algorithm has
the best “worst case” performance. Note that although some
of the NR metrics have lower averaged accuracy rates than
PSNR and SSIM, their minimal performance is still much

better than PSNR and SSIM. This observation suggests that
the performances of those NR algorithms are more consistent
than PSNR and SSIM. Again, it should be emphasized that
here we have compared our proposed method with the FR
method SSIM and PSNR as well as the NR algorithms trained
on the LIVE database itself. It is a remarkable finding that the
proposed training free C-IQA method achieves the best overall
performance.

IV. CONCLUSION

We have introduced in this paper the concept of comparative
image quality assessment (C-IQA) that predicts the relative
quality of two images subject to arbitrary distortions at dif-
ferent level. We then introduced a free energy minimization
based C-IQA algorithm. Unlike the no-reference or blind IQA
methods that treat the two input images independently, infor-
mation from both images are combine to initialize posterior
distributions for parameters of the internal generative model.
The model learned from each image is then used to explain
the image itself and the other one. And the relative quality of
the two images can be precisely estimated through examining
the free energy levels of the model-image fitting process.
The proposed algorithms has been tested using over 300,000
image pairs sampled from the LIVE image database with a
remarkable overall prediction accuracy of 98% which even
outperforms the full reference methods PSNR and SSIM as
well as some of the most advanced natural scene statistics
based no-reference image quality metrics.
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