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ABSTRACT

Tone mapping operators (TMOs) that convert high dynamic range
(HDR) images to standard low dynamic range (LDR) images are
highly desirable for the visualization of these images on standard
displays. Although many existing TMOs produce visually appeal-
ing images, it is until recently validated objective measures that can
assess their quality have been proposed. Without such objective
measures, the design of traditional TMOs can only be based on in-
tuitive ideas, lacking clear goals for further improvement. In this
paper, we propose a substantially different tone mapping approach,
where instead of explicitly designing a new computational structure
for TMO, we search in the space of images to find better quality
images in terms of a recent objective measure that can assess the
structural fidelity between two images of different dynamic ranges.
Specifically, starting from any initial image, the proposed algorithm
moves the image along the gradient ascent direction and stops un-
til it converges to a maximal point. Our experiments show that the
proposed algorithm reliably produces better quality images upon a
number of state-of-the-art TMOs.

Index Terms— tone mapping, structural fidelity, high dynamic
range image, image quality assessment, gradient-based optimization

1. INTRODUCTION

With the rapid advances of imaging and computer graphics technolo-
gies, high dynamic range (HDR) images that have greater dynamic
ranges of intensity levels than standard or low dynamic range (LDR)
images are becoming widely available [1]. In most application en-
vironment, in order to visualize such HDR images, tone mapping
operators (TMOs) must be applied that convert them to LDR images
before they can be presented using standard displays. A significant
number of TMOs have been proposed recently (for example [2–5]),
many of which are able to produce visually appealing pictures. How-
ever, these TMOs were developed without the question of “what con-
stitutes a good tone mapped image” being properly answered. Qual-
ity assessment methods of tone mapped images are highly desirable,
without which tone mapping research lacks solid scientific ground
− algorithm development has no optimization goal, different TMOs
cannot be compared, and further improvement is directionless.

Subjective evaluation is the most straightforward method to as-
sess tone mapped images [6–8] but is extremely time consuming and
expensive, making them impossible to be embedded into automatic
optimization algorithms [9]. In addition, certain image structures
contained in HDR images may be mapped to flat regions (and are
thus missing) in tone mapped images, but human observers may not
be aware of their existence. Therefore, subjective evaluation may

not be regarded as a fully reliable golden standard in assessing the
quality of tone mapped images.

Objective quality assessment of tone mapped images is a diffi-
cult problem. Since the original HDR and the tone mapped LDR im-
ages have different dynamic ranges, typical objective image quality
measures such as peak signal-to-noise ratio (PSNR) and the struc-
tural similarity index (SSIM) [10, 11] are not applicable. To the best
of our knowledge, only a few objective assessment methods have
been proposed for HDR images. The HDR visible differences pre-
dictor (HDR-VDP) [1, 12] attempts to differentiate between visible
and invisible distortions in terms of detection probability. However,
HDR-VDP is designed to predict the visibility of distortions between
two HDR images of the same dynamic range, and cannot be em-
ployed to compare an HDR with an LDR image. A dynamic range
independent quality measure was proposed in [13], which improves
upon HDR-VDP and produces three quality maps indicating the loss
of visible features, the amplification of invisible features, and the re-
versal of contrast polarity, respectively. Because of the reduction in
dynamic range, tone mapping operations inevitably cause informa-
tion loss, and thus a natural question is how much structural infor-
mation in the HDR image is faithfully preserved in the tone mapped
image. Motivated by the philosophy of the SSIM approach [10],
a cross dynamic range structural fidelity measure was proposed in
[14] and subsequently refined in [15,16]. This method not only pro-
vides an overall quality assessment of a tone mapped image, but also
produces a structural fidelity map that indicates how well the local
structural details are preserved at each spatial location.

The purpose of this work is to develop better TMOs by mak-
ing use of the objective structural fidelity measure proposed in [16].
Unlike the design of traditional TMOs, we do not start from a differ-
ent computational structure for tone mapping. Instead, we explicitly
treat tone mapping as an optimization problem in the image space
and propose an iterative search approach that starts from any ini-
tial image and moves step-by-step in the image space towards the
direction of improving the structural fidelity measure until a (local)
maximal point is reached. When applied to initial images generated
by existing and state-of-the-art TMOs, our algorithm almost always
enhances the visibility of image details and improves the structural
fidelity measure. Indeed, it often restores image structures that are
missing in the images produced by state-of-the-art TMOs.

2. TONE MAPPING BY STRUCTURAL FIDELITY
MAXIMIZATION

2.1. Cross Dynamic Range Structural Fidelity

Typical image similarity measures such as PSNR and SSIM [10]
cannot be directly applied to assess the distortions between two im-
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ages with different dynamic ranges. The cross dynamic range struc-
tural fidelity measure in [14–16] aims to overcome this problem and
is briefly described as below.

Let x and y be two image patches extracted from the HDR and
the LDR images, respectively. A local structural fidelity measure is
defined as

Slocal(x,y) =
2σ̃xσ̃y + C1

σ̃2
x + σ̃2

y + C1
· σxy + C2

σxσy + C2
, (1)

where the first term is a modification of the local contrast comparison
component in SSIM (more details are given later). The second term
is the same as the structure comparison component in the original
SSIM index, where σx, σy and σxy denote the local standard devi-
ations and cross correlation between the two corresponding patches
in the HDR and LDR images, respectively. As in SSIM, C1 and C2

are positive constants to avoid instabilities at low energy regions.
The local contrast comparison term in (1) is derived based on

two intuitive considerations. First, as along as the contrast in the
HDR and LDR patches are both significant or both insignificant, the
contrast differences should not be penalized. Second, the measure
should penalize the cases in which the contrast is significant in one
of the patches but not the other. To gauge the significance of local
contrast, we pass the local standard deviation σ through a nonlinear
mapping function, resulting in the σ̃ value in (1). In [16], the non-
linear mapping function is defined using a psychometric function
known as Galton’s ogive [17], which determines the detection prob-
ability of the amplitude of the sinusoidal stimulus using a cumulative
normal distribution function. In [16], the psychometric function was
rewritten in terms of the standard deviation of the signal. As a result,
the mapping between σ and σ̃ is given by

σ̃ =
1√
2πθσ

∫ σ

−∞
exp

[
− (t− τσ)2

2θ2σ

]
dt , (2)

where τσ is a contrast threshold and θσ = τσ/3 [16]. In [16], τσ is
calculated for natural images using a CSF model as well as a contrast
sensitivity measurement assuming a pure sinusoidal stimulus.

The local structural fidelity measure Slocal is applied using a
sliding window that runs across the image, resulting in a map that
reflects the variation of structural fidelity across space. Figure 1(g)
shows an example of such a structural fidelity map computed for
a tone mapped “memorial” image Fig. 1(a). The structural fidelity
map is reasonably consistent with visual perception. For example,
due to overexposure, the structural details of the brightest window
region are missing, which are well indicated in the map. Finally, the
quality map is averaged to provide a single overall structural fidelity
measure of the image:

S(X,Y) =
1

M

M∑
i=1

Slocal(RiX,RiY) =
1

M

M∑
i=1

Slocal(xi,yi) ,

(3)
where X and Y are column vectors representing the HDR and the
tone mapped LDR images, respectively, Ri denotes the matrix that
extract the i-th patch from the image, xi = RiX and yi = RiY are
column vectors of length N representing the i-th patches extracted
from the HDR and LDR images, respectively, and M is the total
number of patches. Following [16], we set C1 = 0.01, C2 = 10, and
employ a Gaussian sliding window of size 11×11 (and thus N =
121) with standard deviation 1.5 to create the fidelity map.

It was shown in [16] that the structural fidelity measure de-
scribed above is well correlated with subjective quality evaluations
of LDR images, and its performance is statistically similar to an av-
erage human subject [16].

2.2. Tone Mapping as an Optimization Problem in the Image
Space

If the purpose of tone mapping is to achieve the best structural fi-
delity, then optimal TMO can be formulated as a maximum struc-
tural fidelity (MSF) problem given by

YMSF = argmax
Y

S(X,Y) . (4)

This is an optimization problem in high dimension space (the same
dimension as the number of pixels in the images) and finding the
global optimal is difficult. Assuming smooth and regular behavior
of the structural fidelity function, here we propose to use a gradi-
ent ascent algorithm to search for local optimal solutions. Similar
gradient-based approaches for SSIM optimization has been studied
previously for the purpose of comparing competing image quality
measures but has not been explored in the context of image quality
enhancement or high dynamic range imaging [18, 19].

Given an initial guess image Y0, we use an iterative algorithm
to search along the gradient ascent direction. At the k-th iteration,
the solution is updated by

Yk = Yk−1 + λ∇YS(X,Y)|Y=Yk−1 , (5)

where ∇YS(X,Y)|Y=Yk−1 is the gradient of S(X,Y) with re-
spect to Y at the previous solution Yk−1, and λ is a constant that
determines the speed of movement along the gradient direction.

To compute the gradient ∇YS(X,Y), we start from the local
structural fidelity and rewrite (1) as

Slocal(x,y) =
A1A2

B1B2
, (6)

where

A1 = 2σ̃xσ̃y + C1 (7)
B1 = σ̃2

x + σ̃2
y + C1 (8)

A2 = σxy + C2 (9)
B2 = σxσy + C2 . (10)

Since both image patches are represented as column vectors of
length N , we have

µy =
1

N
1T y (11)

σ2
y =

1

N
(y − µy)T (y − µy) (12)

σxy =
1

N
(x− µx)T (y − µy) . (13)

The gradient of local structural fidelity measure with respect to y
can then be expressed as

∇ySlocal(x,y) =
(A′1A2 +A1A

′
2)

B1B2

− (B′1B2 +B1B
′
2)A1A2

(B1B2)2
, (14)

where

A′1 = ∇yA1 , B
′
1 = ∇yB1 , A

′
2 = ∇yA2 , B

′
2 = ∇yB2 . (15)

Noting that

∇yσy =
1

Nσy
(y − µy) (16)

∇yσxy =
1

N
(x− µx) , (17)
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(a) initial image (b) after 1 iteration (c) after 3 iterations (d) after 10 iterations (e) after 25 iterations

(f) initial image, S = 0.9157 (g) 1 iteration, S = 0.9620 (h) 3 iterations, S = 0.9841 (i) 10 iterations, S = 0.9895 (j) 25 iterations, S = 0.9914

Fig. 1. Tone mapped “Memorial” images and their structural fidelity maps. The initial image (a) was created by Adobe Photoshop “Exposure
and Gamma” method and (f) is its structural fidelity map, where brighter indicates higher structural fidelity. The top row also shows the
images created after the first (b), the third (c), the 10-th (d) and the 25-th (e) iterations using the proposed algorithm, and the bottom row
shows their corresponding structural fidelity maps (g)-(j). All images are cropped for better visualization.

we have

A′1 = 2σ̃x∇yσ̃y

=
2σ̃x√
2πθσ

exp

[
− (σy − τσ)2

2θ2σ

]
· ∇yσy

=

√
2

π

σ̃x
Nθσσy

exp

[
− (σy − τσ)2

2θ2σ

]
(y − µy) , (18)

B′1 = 2σ̃y∇yσ̃y

=

√
2

π

σ̃y
Nθσσy

exp

[
− (σy − τσ)2

2θ2σ

]
(y − µy) , (19)

A′2 =
1

N
(x− µx) , (20)

B′2 = σx∇yσy =
σx
Nσy

(y − µy) . (21)

Plugging (7), (8), (9), (10), (18), (19), (20) and (21) into (14), we
obtain the gradient of local structural fidelity. Finally, summing all
the local gradient together, we can compute the the gradient of the
overall structural fidelity measure with respect to the LDR image Y
as

∇YS(X,Y) =
1

M

M∑
i=1

RT
i ∇ySlocal(x,y)|x=xi,y=yi , (22)

which is subsequently plugged into (5) to update the solution that is
fed into the next iteration.

3. EXPERIMENTAL RESULTS

There are only two new parameters that need to be determined in
our iterative algorithm, which are λ that controls the speed of con-
vergence, and the termination threshold T that stops the iteration
when the structural fidelity values between two consecutive itera-
tions is smaller than the threshold. Throughout our experiment, we
set λ = 150 and T = 0.0001 and empirically find the behavior of
the proposed algorithm is not sensitive to these parameters.

To test the performance of the proposed method, we select a
set of widely-used HDR images as test images, which are partially
listed in Table 1 and similar results are obtained for other test im-
ages. The initial images for the iterative algorithm are created using
different approaches, including blank images (all image pixels are
set to 128), linearly mapped images (direct linear scaling from the
source HDR images to the dynamic range of [0,255]), and images
created by state-of-the-art TMOs [2, 4, 5, 20]. It can be observed
in Table 1 that starting from simple blank and linearly-scaled initial
images, the proposed method successfully produces high structural
fidelity images. In addition, it is also quite effective at improving
upon all state-of-the-art TMOs.

Figure 1 provides a visual demonstration of the iterative pro-
cedure, where the proposed algorithm is applied to an initial tone
mapped “Memorial” image created by the “Exposure and Gamma”
method in Adobe Photoshop. The structural fidelity map is very ef-
fective at detecting the missing details in the tone mapped images.
For example, the structural details in the brightest window region in
the initial image Fig. 1(a) are completely lost due to tone mapping
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Table 1. Comparison of structural fidelity scores between initial and converged images

Image Blank image Linear mapping Fattal [4] Durand [20] Reinhard [2] Drago [5]

Kitchen initial image 0.0099 0.7367 0.8748 0.7467 0.8073 0.7728
converged image 0.8757 0.9737 0.9721 0.9758 0.9840 0.9796

Bristol initial image 0.0099 0.8726 0.9020 0.7269 0.8013 0.7574
converged image 0.8754 0.9812 0.9610 0.9493 0.9796 0.9747

Tinterna initial image 0.0099 0.9572 0.9471 0.8797 0.9473 0.9307
converged image 0.9052 0.9951 0.9786 0.9818 0.9958 0.9949

Memorial initial image 0.0099 0.9573 0.9586 0.9559 0.9832 0.9765
converged image 0.9184 0.9934 0.9863 0.9950 0.9959 0.9972

and are clearly indicated by the central dark region in the structural
fidelity map Fig. 1(f). With the progress of iterations, such details are
becoming more and more visible until nearly perfectly restored after
25 iterations as shown in Fig. 1(e). The evolvement of the structural
details is very well tracked by the structural fidelity maps computed
along with the iterations, which eventually converge to a nearly uni-
form white picture.
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Fig. 2. Structural fidelity versus iteration of tone mapped “Bristol”
images with initial images created by different TMOs.

To observe the behavior of the iterations numerically, we plot the
structural fidelity measure as a function of iteration for two source
images in Figs. 2 and 3, respectively. It appears that the proposed
iterative approach is well-behaved and always increases monotoni-
cally until it converges to a fixed point in the image space, although
the fixed point may only be a local maximum. The different struc-
tural fidelity values of the converged images suggest that the local
maxima obtained from different initial images are different. This
indirectly reflects the complication of the search space.

The computational complexity in each iteration of the proposed
algorithm is linear with respect to the number of pixels in the image.
Our unoptimized MATLAB implementation on an Intel Quad-Core
2.67GHz computer takes on average around 6 seconds per iteration
on an image of size 512×512.

4. CONCLUSIONS AND DISCUSSIONS

In this study, we formulate tone mapping as an optimization problem
in the space of images and propose a gradient ascent algorithm to
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Fig. 3. Structural fidelity versus iteration of tone mapped “Kitchen”
images with initial images created by different TMOs.

maximize the quality of the tone mapped image in terms of a recently
proposed structural fidelity measure. Starting from simple images
such as a completely blank image or a linearly scaled image from the
HDR image, the proposed algorithm can automatically find images
with reasonably high structural fidelity. When it is applied to initial
images created by state-of-the-art TMOs, it always produces even
better quality images.

The monotonic convergence property and the analysis of Figs. 2
and 3 suggest a locally smooth/convex and globally sophisticated
high-dimensional search space. The limitation of the current gradi-
ent ascent algorithm is that it can only find local maxima. Improved
solutions may be found by starting from multiple initial images and
pick the resulting converged image that has the highest structural
fidelity. However, this still cannot guarantee global maximum. In
the future, the search space needs to be carefully investigated and
more advanced optimization algorithms can be exploited. In ad-
dition, other quality factors such as natural scene statistics models
[15, 16, 21] may also be incorporated to further improve the results.
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