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ABSTRACT 

The objective measurement of blockiness plays an important role 
in many applications, such as the quality assessment of an image, 
and the design of image and video coding system. However, most 
of the existing no-reference blockiness metrics do not consider 
important influences of grid distortion of an image on the 
performance of the metric. In this paper, we propose a new 
blockiness metric, which is robust to grid distortion, based on the 
marginal distribution of local wavelet coefficients and saliency 
information. Experiments for several public image databases 
showed that the proposed metric provides consistent correlations 
with subjective blockiness scores and outperforms other existing 
no-reference blockiness metrics. 
 

Index Terms— blockiness metric, blind, wavelet coefficients, 
saliency 
 

1. INTRODUCTION 

Measuring a quality of an image is a considerable task in various 
applications such as image restoration, processing, and quality 
monitoring system [1]. In order to determine a quality of an image, 
subjective evaluation is considered as the most reliable approach 
since human beings are end users judging the quality in most 
practical applications. However, subjective evaluations are costly, 
time-consuming, and thus impractical for real-time implementation 
and system integration. Therefore, many objective quality metrics 
have been developed in recent decades. Objective quality metrics 
are classified into three categories: full-, reduced-, and no-
reference metrics [1]. In the full-reference metric, a distorted 
image is compared to a distortion-free reference image. In the 
reduced-reference metric, only partial features of the reference 
image are used. On the other hand, the no-reference metric does 
not require any information about a reference image, instead a 
quality score is computed based on inherent characteristics of a 
given image. Since no reference image is available in many 
practical implementations, demands for a no-reference approach 
have significantly increased. 

No-reference quality metrics generally seek to capture one or 
a few distortions due to the lack of reference information [2, 3]. 
There are several common distortions that may occur during image 
processing; for example, white noise is presented due to a sensor 
and transmission over a communication channel, while an image 
compression introduces blockiness, blurriness, and ringing artifacts. 
This paper focuses on blockiness due to its importance in image 
and video compression, enhancement, and quality assessment. 
Several no-reference blockiness metrics have been proposed in the 
literature [4-17]. However, most of the existing no-reference 
blockiness metrics neglect the important influences of grid 

distortions of an image on the performance of the metric. In this 
paper, a new objective metric is proposed for measuring blockiness 
in images and videos. The proposed metric is based on the 
marginal distribution of local wavelet coefficients considering the 
spatial activity masking effect of the human visual system (HVS). 
In addition, the salient property of the HVS is considered in the 
pooling step. Unlike other metrics, this metric can effectively 
predict the perceived blockiness even when the grid of images is 
distorted. 

The remainder of this paper is organized as follows. Section II 
presents a brief overview of existing no-reference blockiness 
metrics. Section III describes the proposed blind blockiness metric 
in detail. In Section IV, the experimental evaluations of the 
proposed metric for several public image databases are presented. 
Lastly, Section V concludes this paper. 
 

2. EXISTING BLOCKINESS METRICS 

In recent decades, several no-reference blockiness metrics have 
been proposed. The objective no-reference metrics for measuring 
blockiness can be classified into the following four categories: 
boundary pixel based, spatial domain, frequency domain, and HVS 
based methods. The majority of the metrics are based on boundary 
pixels of a block where blockiness generally occurs. In [4], the 
blockiness was computed as the relative ratio of slopes of the 
boundary and internal pixels in a 1-D pixel vector made of row and 
column pixels across adjacent blocks. In [5], Perra et al. presented 
a blockiness index, which is a combination of luminance variations 
between the block boundary pixels and the remaining pixels. In [6], 
Park et al. modeled blockiness using a 2-D linear function, 2-D 
step function, and Gaussian noise model. 

Several blockiness researches have been performed in the 
spatial and frequency domains [7, 8]. For example, Meesters et al. 
proposed a metric based on the detection of low-amplitude edges 
computed by Gaussian blurred edges [7]. In [8], edges were 
modeled as the combination of primary edges, undistorted edges, 
distorted edges, and blocking artifacts. The blockiness is evaluated 
in this model using Fourier transformation and least significant bits. 

HVS based approaches have also been extensively proposed 
in order to take into account the response of HVS on perceived 
blockiness. In [9], Wu et al. proposed a metric using the weighted 
mean squared difference along block boundaries, as well as 
considering luminance masking. In [10], a blocky image was 
modeled as a non-blocky image invaded by a pure blocky signal, 
and luminance and texture masking were considered. In [11], the 
blocking artifacts were modeled as 2-D step functions, and the 
perceptual blockiness was estimated in the DCT domain exploiting 
texture masking and luminance masking. In [12], the luminance 
masking and the concept of the noticeable blockiness in different 

1874978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



perceptual regions were employed to measure the visual strength 
of the blocking artifacts. In [13], Pan et al. combined the 
blockiness and flatness with the local contrast masking and spatial 
masking. 

Those metrics reviewed above are either based on the 
assumption that grid information, an origin and a size of a block, is 
known and stationary or do not consider the grid information. 
However, this assumption is invalid in real-life manipulations such 
as up/down-scaling and cut and paste operation. Furthermore, in 
video coding, blocking artifacts can occur at a non-regular grid 
[14]. In recent researches [15, 16, 17], the grid information is 
considered into an algorithm. In [15, 16], the size and offset of the 
grid were detected before computing a blockiness score. However, 
such approaches that try to determine exact grid information are 
very sensitive to inaccuracy of a detected grid. In [17], a new 
approach was proposed based on directions of edges, which does 
not require the exact location of the block boundary and thus is 
insensitive to the inaccuracy of the grid-detection compared to the 
above two methods. 
 

3. PROPOSED BLOCKINESS METRIC 

This section describes the proposed no-reference blockiness metric 
in detail. The proposed metric is based on the marginal distribution 
of local wavelet coefficients considering characteristics of HVS, 
i.e., activity masking effect and saliency. Unlike most blockiness 
metrics, the proposed metric does not require the exact grid 
information such as origin or size of a block. The approach that 
employs marginal distribution of local wavelet coefficients is 
based on our previous work [18]. In this paper, the method is 
improved considering the concept of activity masking and saliency 
information. 

Fig. 1 illustrates block diagram of the proposed metric. In the 
method, an image is first divided into N N blocks. Note that the 
size of a block, N, is not restricted to multiple of the size of the 
grid used for compression, for example, a size of grid is 8 in JPEG. 
For each block, wavelet coefficients are computed, and then 
marginal distributions of the wavelet coefficients are constructed 
for horizontal and vertical sub-signals, respectively. Based on 
these distributions, local blockiness scores are derived and 
integrated into an overall blockiness index using saliency-based 
pooling model. The detailed descriptions are given in following 
sections. Note that, for the sake of simplicity, we focus on 
horizontal blockiness, and vertical blockiness can be computed 
very similarly. 
 
3.1. Marginal distribution of wavelet coefficients 
The wavelet transform is an effective way to reveal both spatial 
and frequency properties of an image. This transform commonly 
divides the information of an image into approximated and 
detailed sub-signals. The approximated sub-signal represents a 

general trend of pixel values, while the other sub-signals represent 
detailed features in vertical, horizontal, and diagonal directions. 

We observed that the marginal distributions of vertical or 
horizontal sub-signals are classified into four cases according to 
existence of blockiness and spatial activity (Fig. 2). In the first 
case (A), a block has low activity with no blockiness; the marginal 
distribution presents low-amplitude or no peak-bins with low-
amplitude non-peak-bins. In the second case (B), a block has high 
activity with no blockiness, and the marginal distribution provides 
high-amplitude peak-bins with high-amplitude non-peak-bins. In 
the third case (C), a block has low activity and includes a blocking 
artifact; there are several high-amplitude peak-bins, and the 
remaining non-peak-bins have low-amplitudes. In the last case (D), 
a block has high activity and includes a blocking artifact; in this 
case, both peak- and non-peak-bins have relatively high 
amplitudes. Among these four cases, the blockiness is only highly 
perceived by HVS in the third case. Even though there are 
obviously blocking artifacts in the fourth case, the blocking 
artifacts are invisible due to the masking effect created by high 
spatial activity. It is interesting to note that all of the normalized 
marginal distributions are similar to each other except for the third 
case. The peak-bins are conspicuously higher than the non-peak-

(a) (b) 

(c) 
 

(d) 

(e) (f) 

Fig. 2. (a) blockiness-free image, (b) blockiness-corrupted 
image, (c-f): Normalized marginal distribution of horizontal 
wavelet coefficient; (c) A: low activity region with no 
blockiness, (d) B: high activity region with no blockiness, (e) 
C: low activity region with blockiness, (f) D: high activity 
region with blockiness. 

 
Fig. 1. Block diagram of the proposed blockiness metric.
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bins for the third case, while there is no distinct boundary between 
the peak-bins and the non-peak-bins for the other cases. From this 
observation, we can estimate the perceptual blockiness exploiting 
magnitudes of peak-bins and non-peak-bins. 

 

3.2. Local blockiness measure 
The horizontal blockiness is estimated based on the marginal 
distribution of horizontal sub-signal of wavelet transform in a local 
block. Let us define the ith N N block as Xi. The horizontal sub-
signal of wavelet transform for Xi is then computed as follows: 

0 0
2 2( , ) ( , ) ( , )

N N
h h i

x y
w u v ψ x y X u x v y

 
     ,      (1) 

where wh represents a horizontal sub-signal, and hψ  is a horizontal 

wavelet function composed of two impulse responses of a vertical 
low-pass filter and a horizontal high-pass filter. The marginal 
distribution of the horizontal sub-signal is constructed as follows: 
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where mwh(u) represents the amplitude of the uth bin of the 
marginal distribution of the horizontal sub-signal. The distribution 
is then normalized into a range from 0 to 1. 

As referred in the previous section, a perceptual blockiness is 
estimated using a difference between average amplitudes of peak-
bins and non-peak-bins. Let us define the peak-bins as Bp(i) and 
the non-peak-bins as Bnp(i). We employ a simple thresholding 
approach for the determination of Bp(i) and Bnp(i) for simplicity, 
even though they can be divided by more accurate method. In this 
paper, 0.7 is empirically used as the threshold value. Accordingly, 
the horizontal local blockiness LBh is calculated as follows: 
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where mBp and mBnp are average values of peak-bins and non-
peak-bins, respectively. Np and Nnp are the numbers of peak-bins 
and non-peak-bins, respectively. The vertical local blockiness LBv 
is calculated with a similar method. 
 

3.3. Saliency-based pooling strategy 
The HVS attends to salient regions in an image because the field of 
view of HVS is very restricted. Given the fact that the artifacts 
present in attended regions are better perceived by the HVS than 
artifacts present in non-attended areas, we utilize the saliency 
information to draw an overall blockiness. The employed method 
for generating the saliency map is graph-based visual saliency 
(GBVS) [19], owing to its simplicity and good performance. A 
bottom-up visual saliency model, GBVS is based on the random 
walks on the graphs constructed using edge strengths between two 
nodes. Based on the saliency map, the overall horizontal 
blockiness Bh and vertical blockiness Bv are computed as follows: 
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where Sai(x,y) is the pixel-wise saliency information, and S(i) is an 
average value of the saliency in the ith local block. M and N are the 

number of local blocks and the size of a local block, respectively. 
Lastly, an overall blockiness of an image is estimated as follows: 

 1( )h vB α B α B     .    (7) 

Here we assume that the horizontal and vertical blockiness have 
the same importance, i.e., α =0.5 is used in (7). MATLAB 
implementation of the proposed metric can be available at 
http://diml.yonsei.ac.kr/~sryu/bmws/. 
 

4. PERFORMANCE EVALUATIONS 

To evaluate the performance of the metric, JPEG-compressed 
images from LIVE [20] and IVC [21] databases, as well as their 
modified versions, are used. LIVE database includes 233 JPEG-
compressed images, including the 29 original color images. The 
subjective experiments for the LIVE database are conducted using 
a continuous linear scale. The difference mean opinion score 
(DMOS) for each image is then calculated from the raw scores. 

The IVC database consists of 10 original images and 235 
distorted images. The distortion types are JPEG, JPEG 2000, 
Locally Adaptive Resolution (LAR) coding, and Gaussian blurring. 
The subjective tests are conducted using a double stimulus 
impairment scale method (DSIS), in which the reference and 
distorted images are sequentially displayed. In our evaluation, 
JPEG-compressed images (50 images) are used. 

In addition to the original LIVE and IVC databases, cropped 
images and resized images are employed to evaluate the robustness 
to grid distortions. The cropped images are obtained from LIVE 
and IVC databases with removing 1, 3, and 5 pixels from boundary. 
The resized images are obtained from being magnified (with a 
scale of  1.2) and contracted (with a scale of  0.8), respectively. 

In our experiments, LIVE JPEG-compressed images (233 
images), their cropped images (233   3 = 699 images), their 
resized images (233   2 = 466 images), IVC JPEG-compressed 
images (50 images), their cropped images (50   3 = 150 images), 
and their resized images (50   2 = 100 images) are used, totaling 
1698 JPEG-compressed images. To evaluate the performance of 
the proposed metric, we follow the suggestions of the VQEG 
report [22]. A four parameter logistic function, as recommended in 
[22], is used for non-linear regression before calculating the 
performance measure, i.e., Pearson correlation coefficient (PCC). 
Note that, for a well-defined metric, a value of PCC should be high. 

Table 1. Performance evaluation of the proposed metric and 
existing metrics for the LIVE databases 
 Pearson correlation coefficient 

Metric LIVE 
Cropped 

LIVE 
Resized 
LIVE 

ALL 

Proposed 0.928 0.906 0.914 0.915 
M1 [4] 0.684 0.530 0.352 0.378 
M2 [5] 0.902 0.883 0.880 0.876 
M3 [6] 0.603 0.272 0.238 0.280 
M4 [9] 0.740 0.856 0.723 0.500 
M5 [10] 0.850 0.872 0.563 0.737 
M6 [11] 0.929 0.593 0.904 0.627 
M7 [12] 0.894 0.590 0.321 0.399 
M8 [13] 0.904 0.766 0.883 0.724 
M9 [15] 0.876 0.885 0.809 0.844 
M10 [16] 0.724 0.734 0.743 0.736 
M11 [17] 0.906 0.887 0.854 0.883 
M12 [18] 0.911 0.880 0.870 0.889 
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Tables 1 and 2 summarize the results of the proposed metric 
compared with twelve existing no-reference blockiness metrics for 
LIVE and IVC databases, respectively. As shown in Tables 1 and 
2, the proposed metric shows good performance for all of the 
databases. In fact, the proposed metric exhibits the highest 
correlations for all cases, except for the case of non-modified 
LIVE images. On the other hand, most existing metrics exhibit low 
correlations, especially when all the images, including non-
modified, cropped, resized images, are mixed (the right-most 
columns in Tables 1 and 2, respectively). The metrics M6 [11], M7 
[12], and M8 [13] showing high correlations for the non-modified 
LIVE images fail to predict perceived blockiness when they are 
applied to other databases. In fact, the obtained results show that 
the metric M7 [12] exhibits very low correlation for IVC databases. 
Only four metrics (M2 [5], M9 [15], M11 [17], and M12 [18]) 
among eleven ones show consistent and high correlations for all of 
the databases. Nevertheless, the proposed metric outperforms these 
three metrics for all the databases. 
 

5. CONCLUSION AND FUTURE WORKS 

In this paper, a novel metric for measuring perceptual blockiness is 
proposed based on the marginal distribution of local wavelet sub-
signals. The local blockiness derived from the relative magnitudes 
between peak-bins and non-peak-bins are integrated into an overall 
objective blockiness score through saliency-based pooling method. 
To evaluate the performance of the proposed metric, we conducted 
experimental verifications on several public image databases. The 
results show that the proposed metric can provide consistent and 
outstanding performance in diverse images with grid-distortions. 
Furthermore, the proposed metric outperforms eleven existing no-
reference blockiness metrics. 

Future research will focus on enhancing the metric to be 
robust to more general grid-distortions. For example, the proposed 
metric cannot be applied when the grid is rotated in different 
directions. Other directions of future research include extending 
blockiness metric into videos considering blockiness fluctuation. 
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